Chinese Journal of Mycology 2023, Vol. 18 Issue (4): 364-369.
Previous Articles Next Articles
1,2
Received:
2022-10-23
Online:
2023-08-28
Published:
2023-09-02
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/
http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/Y2023/V18/I4/364
[1] KOBAYASHI T, MENON A K. Transbilayer lipid asymmetry[J]. Curr Biol, 2018, 28(8): R386-R391. [2] VAN MEER G, VOELKER D R, FEIGENSON G W. Membrane lipids: where they are and how they behave[J]. Nat Rev Mol Cell Biol, 2008, 9(2): 112-124. [3] MUTHUSAMY B P, NATARAJAN P, ZHOU X, et al. Linking phospholipid flippases to vesicle-mediated protein transport[J]. Biochim Biophys Acta, 2009, 1791(7): 612-619. [4] TIMCENKO M, LYONS J A, JANULIENE D, et al. Structure and autoregulation of a P4-ATPase lipid flippase[J]. Nature, 2019, 571(7765): 366-370. [5] VAN DER MARK V A, ELFERINK R P, PAULUSMA C C. P4 ATPases: flippases in health and disease[J]. Int J Mol Sci, 2013, 14(4): 7897-7922. [6] GUINEA J. Global trends in the distribution of Candida species causing candidemia[J]. Clin Microbiol Infect, 2014, 20(Suppl 6): 5-10. [7] ANDES D R, SAFDAR N, BADDLEY J W, et al. The epidemiology and outcomes of invasive Candida infections among organ transplant recipients in the United States: results of the Transplant-Associated Infection Surveillance Network (TRANSNET)[J]. Transpl Infect Dis, 2016, 18(6): 921-931. [8] FULLER J, DINGLE T C, BULL A, et al. Species distribution and antifungal susceptibility of invasive Candida isolates from Canadian hospitals: results of the CANWARD 2011-16 study[J]. J Antimicrob Chemother, 2019, 74(Suppl 4): iv48-iv54. [9] 葛一平, 刘维达. 新生隐球菌荚膜多糖葡萄糖醛酸木糖甘露聚糖的意义[J]. 国际皮肤性病学杂志, 2008, 34(5): 336-338. [10] DAL COL J, LAMBERTI M J, NIGRO A, et al. Phospholipid scramblase 1: a protein with multiple functions via multiple molecular interactors[J]. Cell Commun Signal, 2022, 20(1): 78. [11] HIRAIZUMI M, YAMASHITA K, NISHIZAWA T, et al. Cryo-EM structures capture the transport cycle of the P4-ATPase flippase[J]. Science, 2019, 365(6458): 1149-1155. [12] RIZZO J, STANCHEV L D, DA SILVA V K A, et al. Role of lipid transporters in fungal physiology and pathogenicity[J]. Comput Struct Biotechnol J, 2019, 17: 1278-1289.DOI: 10.1016/j.csbj.2019.09.001. [13] BHATTACHARYA S, SAE-TIA S, FRIES B C. Candidiasis and mechanisms of antifungal resistance[J]. Antibiotics (Basel), 2020, 9(6):312. [14] HASSAN Y, CHEW S Y, THAN L T L. Candida glabrata: pathogenicity and resistance mechanisms for adaptation and survival[J]. J Fungi (Basel), 2021, 7(8):667. [15] GULSHAN K, MOYE-ROWLEY W S. Vacuolar import of phosphatidylcholine requires the ATP-binding cassette transporter Ybt1[J]. Traffic, 2011, 12(9): 1257-1268. [16] SASSER T L, PADOLINA M, FRATTI R A. The yeast vacuolar ABC transporter Ybt1p regulates membrane fusion through Ca2+ transport modulation[J]. Biochem J, 2012, 448(3): 365-372. [17] RIPMASTER T L, VAUGHN G P, WOOLFORD J L Jr.. DRS1 to DRS7, novel genes required for ribosome assembly and function in Saccharomyces cerevisiae[J]. Mol Cell Biol, 1993, 13(12): 7901-7912. [18] CHEN C Y, INGRAM M F, ROSAL P H, et al. Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function[J]. J Cell Biol, 1999, 147(6): 1223-1236. [19] MISU K, FUJIMURA-KAMADA K, UEDA T, et al. Cdc50p, a conserved endosomal membrane protein, controls polarized growth in Saccharomyces cerevisiae[J]. Mol Biol Cell, 2003, 14(2): 730-747. [20] SAITO K, FUJIMURA-KAMADA K, FURUTA N, et al. Cdc50p, a protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae[J]. Mol Biol Cell, 2004, 15(7): 3418-3432. [21] GALL W E, GEETHING N C, HUA Z, et al. Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo[J]. Curr Biol, 2002, 12(18): 1623-1627. [22] HANKINS H M, SERE Y Y, DIAB N S, et al. Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles[J]. Mol Biol Cell, 2015, 26(25): 4674-4685. [23] HUA Z, FATHEDDIN P, GRAHAM T R. An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system[J]. Mol Biol Cell, 2002, 13(9): 3162-3177. [24] KISHIMOTO T, MIOKA T, ITOH E, et al. Phospholipid flippases and Sfk1 are essential for the retention of ergosterol in the plasma membrane[J]. Mol Biol Cell, 2021, 32(15): 1374-1392. [25] TAKAR M, WU Y, GRAHAM T R. The essential Neo1 protein from budding yeast plays a role in establishing aminophospholipid asymmetry of the plasma membrane[J]. J Biol Chem, 2016, 291(30): 15727-1539. [26] DAS A, SLAUGHTER B D, UNRUH J R, et al. Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity[J]. Nat Cell Biol, 2012, 14(3): 304-310. [27] ZHOU X, SEBASTIAN T T, GRAHAM T R. Auto-inhibition of Drs2p, a yeast phospholipid flippase, by its carboxyl-terminal tail[J]. J Biol Chem, 2013, 288(44): 31807-31815. [28] YANG C, BIAN Z, BLECHERT O, et al. High prevalence of HIV-related cryptococcosis and increased resistance to fluconazole of the Cryptococcus neoformans complex in Jiangxi Province, South Central China[J]. Front Cell Infect Microbiol, 2021, 11: 723251.DOI: 10.3389/fcimb.2021.723251. [29] MAZIARZ E K, PERFECT J R. Cryptococcosis[J]. Infect Dis Clin North Am, 2016, 30(1): 179-206. [30] HUANG W, LIAO G, BAKER G M, et al. Lipid flippase subunit Cdc50 mediates drug resistance and virulence in Cryptococcus neoformans[J]. mBio,2016, 7(3):e00478-16. [31] HU G, KRONSTAD J W. A putative P-type ATPase, Apt1, is involved in stress tolerance and virulence in Cryptococcus neoformans[J]. Eukaryot Cell, 2010, 9(1): 74-83. [32] RIZZO J, COLOMBO A C, ZAMITH-MIRANDA D, et al. The putative flippase Apt1 is required for intracellular membrane architecture and biosynthesis of polysaccharide and lipids in Cryptococcus neoformans[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(3): 532-541. [33] HU G, CAZA M, BAKKEREN E, et al. A P4-ATPase subunit of the Cdc50 family plays a role in iron acquisition and virulence in Cryptococcus neoformans[J]. Cell Microbiol, 2017, 19(6).DOI: 10.1111/cmi.12718. [34] CAO C, WANG Y, HUSAIN S, et al. A mechanosensitive channel governs lipid flippase-mediated echinocandin resistance in Cryptococcus neoformans[J]. mBio, 2019, 10(6):e01952-19. [35] YU S J, CHANG Y L, CHEN Y L. Calcineurin signaling: lessons from Candida species[J]. FEMS Yeast Res, 2015, 15(4): fov016. [36] TANCER R J, WANG Y, PAWAR S, et al. Development of antifungal peptides against Cryptococcus neoformans; leveraging knowledge about the cdc50Δ mutant susceptibility for lead compound development[J]. Microbiol Spectr, 2022, 10(2): e0043922. [37] STANISZEWSKA M. Virulence factors in Candida species[J]. Curr Protein Pept Sci, 2020, 21(3): 313-323. [38] XU D, ZHANG X, ZHANG B, et al. The lipid flippase subunit Cdc50 is required for antifungal drug resistance, endocytosis, hyphal development and virulence in Candida albicans[J]. FEMS Yeast Res, 2019, 19(3):foz033. [39] FESTA R A, HELSEL M E, FRANZ K J, et al. Exploiting innate immune cell activation of a copper-dependent antimicrobial agent during infection[J]. Chem Biol, 2014, 21(8): 977-987. [40] 许海涛. 白念珠菌CaLEM3基因的功能研究[D].合肥市:淮北师范大学, 2021. [41] SCHULTZHAUS Z, ZHENG W, WANG Z, et al. Phospholipid flippases DnfA and DnfB exhibit differential dynamics within the A. nidulans Spitzenkörper[J]. Fungal Genet Biol, 2017, 99: 26-28.DOI: 10.1016/j.fgb.2016.12.007. [42] SCHULTZHAUS Z, YAN H, SHAW B D. Aspergillus nidulans flippase DnfA is cargo of the endocytic collar and plays complementary roles in growth and phosphatidylserine asymmetry with another flippase, DnfB[J]. Mol Microbiol, 2015, 97(1): 18-32. [43] SCHULTZHAUS Z, CUNNINGHAM G A, MOURIÑO-PÉREZ R R, et al. The phospholipid flippase DnfD localizes to late Golgi and is involved in asexual differentiation in Aspergillus nidulans[J]. Mycologia, 2019, 111(1): 13-25. |
[1] | . Alert to the prevalence of Trichophyton indotineae infection in China [J]. Chinese Journal of Mycology, 2023, 18(4): 289-290,309. |
[2] | CHENG Peng, A Xiangren, ZHOU Jianwu, MU Xiaoming, TIAN Lijuan, MA Xiaoya. Study on the effect of fluconazole with subinhibitory concentration on the virulence of Candida glabrata based on the Galleria mellonella infection model [J]. Chinese Journal of Mycology, 2023, 18(4): 291-295. |
[3] | WANG Shun, LI Hong, QU Yujie, LI Tingting, JIN Tingting, HU Fangfang, LUO Zhenhua. A study on the distribution and the biofilm formation related genes of Candida parapsilosis complex clinically isolated in Guizhou area [J]. Chinese Journal of Mycology, 2023, 18(4): 301-309. |
[4] | ZHAO Jingyu, LIU Yishu, DING Junli, GAO Yangjie, XU Lezhen, LIAO Wanqing, FANG Wei, GU Junlin. Mechanisms of EREG incryptococcal traversal of the blood-brain barrier [J]. Chinese Journal of Mycology, 2023, 18(4): 310-314. |
[5] | . [J]. Chinese Journal of Mycology, 2023, 18(4): 350-353. |
[6] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 167-171. |
[7] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 178-182. |
[8] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 188-192. |
[9] | GAO Ruijia, LIU Shirui, SUN Jinpeng, FAN Jinghua, LI Fuqiu. Experimental study on the in vitro antibacterial activity of Medi hair spray dressing against Malassezia [J]. Chinese Journal of Mycology, 2023, 18(1): 19-23,41. |
[10] | . [J]. Chinese Journal of Mycology, 2023, 18(1): 49-52. |
[11] | . [J]. Chinese Journal of Mycology, 2023, 18(1): 53-57. |
[12] | . [J]. Chinese Journal of Mycology, 2023, 18(1): 58-64. |
[13] | . [J]. Chinese Journal of Mycology, 2023, 18(1): 65-70. |
[14] | . [J]. Chinese Journal of Mycology, 2023, 18(1): 80-85. |
[15] | HUANG Yue, CAI Liangqi, ZHANG Ziping, CHENG Bo. Influence of CHK1 gene on ultrastrcture and fIuconazole susceptibility of Candida albicans [J]. Chinese Journal of Mycology, 2022, 17(4): 265-268,288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||