Chinese Journal of Mycology 2023, Vol. 18 Issue (4): 354-358,363.
Previous Articles Next Articles
Received:
2023-03-21
Online:
2023-08-28
Published:
2023-09-02
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/
http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/Y2023/V18/I4/354
[1] BRENNER M B, MCLEAN J, DIALYNAS D P,et al Identification of a putative second T-cell receptor[J]. Nature, 1986, 322(6075): 145-149. [2] DE SOUZA-SILVA T G, GOLLOB K J, DUTRA W O. T-cell receptor variable region usage in Chagas disease: A systematic review of experimental and human studies[J]. PLOS Neglected Trop Dis, 2022, 16(9): e0010546. [3] DAVIS M M, BJORKMAN P J. T-cell antigen receptor genes and T-cell recognition[J]. Nature, 1988, 334(6181): 395-402. [4] PAPADOPOULOU M, SANCHEZ G S, VERMIJLEN D. Innate and adaptive γδ T cells: How, when, and why[J]. Immunological Reviews, 2020, 298(1):99-116. [5] BRANDES M, WILLIMANN K, LANG A B, et al. Flexible migration program regulates γδ T-cell involvement in humoral immunity[J]. Blood, 2003, 102(10): 3693-3701. [6] BLEICHER P A, BALK S P, HAGEN S J, et al. Expression of murine CD1 on gastrointestinal epithelium[J]. Science, 1990, 250(4981): 679-682. [7] BONNEVILLE M, O'BRIEN R L, BORN W K. γδ T cell effector functions: A blend of innate programming and acquired plasticity[J]. Nature Reviews Immunology, 2010, 10(7): 467-478. [8] OUYANG W, KOLLS J K, ZHENG Y. The biological functions of T helper 17 cell effector cytokines in inflammation[J]. Immunity, 2008, 28(4): 454-467. [9] STARK M A, HUO Y, BURCIN T L, et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17[J]. IMMUNITY,2005, 22(3):285-294. [10] KASHEM S, RIEDL M, YAO C, et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity[J]. Immunity, 2015, 43(3): 515-526. [11] ROGERS, THOMAS, R, et al. Candida albicans stimulates IL-23 release by human dendritic cells and downstream IL-17 secretion by delta Vδ1 T cells[J]. J Immunol, 2015, 194(12);5953-5960. [12] FENOGLIO D, POGGI A, CATELLANI S, et al. Vδ1 T lymphocytes producing IFN-γ and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans[J]. Blood, 2009, 113(26): 6611-6618. [13] O’SHEA J J, PAUL W E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells[J]. Science, 2010, 327(5969): 1098-1102. [14] DELSING C E, GRESNIGT M S, LEENTJENS J, et al. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: A case series[J]. BMC infect Dis, 2014, 14(1): 1-12. [15] ELAHI S, PANG G, CLANCY R, et al. Cellular and cytokine correlates of mucosal protection in murine model of oral candidiasis[J]. Infect Immun, 2000, 68(10): 5771-5777. [16] CONTI H R, PETERSON A C, BRANE L, et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections[J]. Exp Med, 2014, 211(10): 2075-2084. [17] WORMLEY JR F L, STEELE C, WOZNIAK K, et al. Resistance of T-cell receptor δ-chain-deficient mice to experimental Candida albicans vaginitis[J]. J Exp Med, 2001, 69(11): 7162-7164. [18] MONIN L, USHAKOV D, ARNESEN H, et al. γδ T cells compose a developmentally regulated intrauterine population and protect against vaginal candidiasis[J]. Mucosal immunol, 2020, 13(6): 969-981. [19] FIDEL P L. Caution regarding interpretations of intrauterine γ/δ T cells in protection against experimental vaginal candidiasis[J]. Mucosal Immunol, 2021, 14(3): 774-775. [20] MONIN L, HAYDAY A. Response to "caution regarding interpretations of intrauterine γδ T cells in protection against experimental vaginal candidiasis"[J]. Mucosal Immunol, 2021, 14(3): 776-777. [21] PETERS B M, COLEMAN B M, WILLEMS H M, et al. The interleukin (IL) 17R/IL-22R signaling axis is dispensable for vulvovaginal candidiasis regardless of estrogen status[J]. J Infect Dis, 2020, 221(9): 1554-1563. [22] DEJIMA T, SHIBATA K, YAMADA H, et al. Protective role of naturally occurring interleukin-17A-producing γδ T cells in the lung at the early stage of systemic candidiasis in mice[J]. Infect Immun, 2011, 79(11): 4503-4510. [23] AMARSAIKHAN N, O'DEA E M, TSOGGEREL A, et al. Lung eosinophil recruitment in response to Aspergillus fumigatus is correlated with fungal cell wall composition and requires γδ T cells[J]. Microbes Infect, 2017, 19(7-8): 422-431. [24] LILLY L M, SCOPEL M, NELSON M P, et al. Eosinophil deficiency compromises lung defense against Aspergillus fumigatus[J]. Infect Immun, 2014, 82(3): 1315-1325. [25] ROMANI L, FALLARINO F, DE LUCA A, et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease[J]. Nature, 2008, 451(7175): 211-215. [26] MOSMANN T R, SAD S. The expanding universe of T-cell subsets: Th1, Th2 and more[J]. Immunol today, 1996, 17(3): 138-146. [27] QURESHI M H, ZHANG T, KOGUCHI Y, et al. Combined effects of IL-12 and IL-18 on the clinical course and local cytokine production in murine pulmonary infection with Cryptococcus neoformans[J]. Eur J Immunol, 1999, 29(2): 643-649. [28] UEZU K, KAWAKAMI K, MIYAGI K, et al. Accumulation of γδ T cells in the lungs and their regulatory roles in Th1 response and host defense against pulmonary infection with Cryptococcus neoformans[J]. Eur J Immunol, 2004, 172(12): 7629-7634. [29] KAWAKAMI K. Regulation by innate immune T lymphocytes in the host defense against pulmonary infection with Cryptococcus neoformans[J]. Jpn J Infect Dis,2004, 57(4): 137-145. [30] WOZNIAK K L, KOLLS J K, WORMLEY F L. Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased IL-17A production by gamma/delta T cells[J]. BMC immunology, 2012, 13(1): 1-11. [31] WOZNIAK K L, RAVI S, MACIAS S, et al. Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis[J]. PloS one, 2009, 4(9): e6854. [32] STANSELL J D, OSMOND D H, CHARLEBOIS E, et al. Predictors of Pneumocystis carinii pneumonia in HIV-infected persons. Pulmonary Complications of HIV Infection Study Group[J]. Am J Respir Crit Care Med, 1997, 155(1): 60-66. [33] KÄGI M K, FIERZ W, GROB P J, et al. High poportion of gamma-delta T cell receptor positive T cells in bronchoalveolar lavage and peripheral blood of HIV-infected patients with Pneumocystis carinii pneumonias[J]. Respiration, 1993, 60(3): 170-177. [34] HANANO R, KAUFMANN S H. Effect on parasite eradication of Pneumocystis carinii-specific antibodies produced in the presence or absence of CD4+ α β T lymphocytes[J]. Eur J Immunol, 1999, 29(8): 2464-2475. [35] STEELE C, ZHENG M, YOUNG E, et al. Increased host resistance against Pneumocystis carinii pneumonia in γδ T-cell-deficient mice: protective role of gamma interferon and CD8+ T cells[J]. Infect Immun, 2002, 70(9): 5208-5225. [36] DEEPE G S, GIBBONS R, WOODWARD E. Neutralization of endogenous granulocyte-macrophage colony-stimulating factor subverts the protective immune response to Histoplasma capsulatum[J]. J Immunol, 1999, 163(9): 4985-4993. [37] DEEPE JR G S, GIBBONS R S. Interleukins 17 and 23 influence the host response to Histoplasma capsulatum[J]. J Infect Dis, 2009, 200(1): 142-151. [38] WVTHRICH M, ERSLAND K, SULLIVAN T, et al. Fungi subvert vaccine T cell priming at the respiratory mucosa by preventing chemokine-induced influx of inflammatory monocytes[J]. Immunity, 2012, 36(4): 680-692. |
[1] | GONG Yuan, SONG Xinyu. Clinical characteristics of 20 cases of PJP and the value of NGS in the diagnosis of PJP [J]. Chinese Journal of Mycology, 2023, 18(4): 296-300. |
[2] | ZHONG Li, WANG Yongxin, LI Xinhua, LIU Jiying, XIAO Yi. Clinical characteristics of fungal ball sinusitis and it’s osteitis [J]. Chinese Journal of Mycology, 2023, 18(4): 315-319. |
[3] | . The clinical characteristics and nursing management of cryptococcal meningitis in 26 immunocompromised cases [J]. Chinese Journal of Mycology, 2023, 18(4): 323-326. |
[4] | . [J]. Chinese Journal of Mycology, 2023, 18(4): 327-330. |
[5] | MENG Zhongjing, CAO Lulu, LU Jin, LIU Zhongqiu, ZHAN Guanjun. Treatment of postoperative Candida glabrata infection after total knee arthroplasty: a case report [J]. Chinese Journal of Mycology, 2023, 18(4): 331-334. |
[6] | LI Jixia, MIN Yan. A case of mixed bloodstream infection of Trichosporon asahii and Magnusiomyces clavatus in a patient with bone marrow transplantation [J]. Chinese Journal of Mycology, 2023, 18(4): 340-343. |
[7] | WANG Shiqi, SONG Yinggai, MO Ran, WAN Zhe, XU Yonghao, LI Ruoyu. A case of chroniccutaneous mucormycosis caused by Mucor irregulari treated with conventional amphotericin B [J]. Chinese Journal of Mycology, 2023, 18(4): 347-349,353. |
[8] | . [J]. Chinese Journal of Mycology, 2023, 18(4): 359-363. |
[9] | . [J]. Chinese Journal of Mycology, 2023, 18(4): 381-384. |
[10] | LI Tiantian, LI Bingkun, HUANG Xiaolu, LIAO Liuwei, JIANG Zhiwen, HE Xiaojuan, MO Nanfang, LI Xiuying, JIANG Li, PAN Kaisu, CAO Cunwei. Analysis of susceptibility factors forinfection with Talaromyces marneffei in non-HIV individuals [J]. Chinese Journal of Mycology, 2023, 18(2): 97-103,110. |
[11] | LI Min, ZHAO Jianping, FENG Jiangtao. Analysis of clinical distribution and drug resistance of Candida in a hospital in Inner Mongolia from 2012 to 2021 [J]. Chinese Journal of Mycology, 2023, 18(2): 104-110. |
[12] | ZHONG Meizhen, GUO Shaoqing, LI Xiaozhong, ZHU Bo. Clinical analysis of 3 casesof very preterm/extremely preterm infant with bloodstream infection caused by multi-drug resistant Candida haemulonii [J]. Chinese Journal of Mycology, 2023, 18(2): 111-116,134. |
[13] | WANG Haofei, WANG Jinlong, HU Wenhan, SONG Qianwen, WU Changde, HE Jie, HU Linlin, XU Jingyuan, LI Qing, PAN Chun, XIE Jianfeng, HUANG Yingzi. Pharmacokinetic changes and influencing factors of amphotericin B in patients with severe invasive fungal infection [J]. Chinese Journal of Mycology, 2023, 18(2): 117-122. |
[14] | ZHU Xinlin, LI Chen, HU Dongying, CHEN Xianzhen, JIANG Weiwei, LIU Yinuo, CHEN Tianyang, CHEN Tiancheng, LIAO Wanqing, LIU Xiaogang, PAN Weihua. Retrospective analysis of Kodamaea ohmeri infection in Asia from 2002 to 2022 [J]. Chinese Journal of Mycology, 2023, 18(2): 123-129. |
[15] | ZHOU Tingting, QIN Renli, XU Qiuhong, LUO Liuchun. Clinical characteristics and risk factors for mortality of 94 patients with Candida bloodstream infection [J]. Chinese Journal of Mycology, 2023, 18(2): 130-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||