Chinese Journal of Mycology 2023, Vol. 18 Issue (2): 178-182.
Previous Articles Next Articles
Received:
2022-02-15
Online:
2023-04-28
Published:
2023-05-26
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/
http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/Y2023/V18/I2/178
[1] GRABOWSKI R, DUGAN E.Disseminated candidiasis in a patient with acute myelogenousleukemia[J].Cutis, 2003, 71(6):466-468. [2] MADNEY Y, SHALABY L, ELANANYM, et al.Clinical features and outcome of hepatosplenic fungal infections in children with haematological malignancies[J].Mycoses, 2020, 63(1):30-37. [3] ANTINORI S, MILAZZO L, SOLLIMA S, et al.Candidemia and invasive candidiasis in adults:A narrative review[J].Eur J Intern Med, 2016, 34:21-28. DOI:10.1016/j.ejim.2016.06.029. [4] ZUZA-ALVES D L, SILVA-ROCHA W P, CHAVES G M. An update on Candida tropicalis based on basic and clinical approaches[J]. Front Microbiol, 2017,8:1927.DOI:10.3389/fmicb.2017.01927. [5] KO J H, JUNG D S, LEE J Y, et al. Poor prognosis of Candida tropicalis among non-albicans candidemia:a retrospective multicenter cohort study, Korea[J]. Diagn Microbiol Infect Dis, 2019, 95(2):195-200. [6] WIEDERHOLD N P. Antifungal resistance:current trends and future strategies to combat[J].Infect Drug Resist, 2017, 10:249-259.DOI:10.2147/IDR.S124917. [7] PAUL S, SINGH S, SHARMA D, et al.Dynamics of in vitro development of azole resistance in Candida tropicalis[J]. J Glob Antimicrob Resist, 2020, 22:553-561.DOI:10.1016/j.jgar.2020.04.018. [8] WANG D, AN N, YANG Y, et al. Candida tropicalis distribution and drug resistance is correlated with ERG11 and UPC2expression[J].Antimicrob Resist Infect Control, 2021, 10(1):54. [9] ARASTEHFAR A, DANESHNIA F, HAFEZ A, et al.Antifungal susceptibility,genotyping,resistance mechanism,and clinical profile of Candida tropicalis blood isolates[J].Med Mycol, 2020, 58(6):766-773. [10] FAN X, XIAO M, ZHANG D, et al.Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China[J].Clin Microbiol Infect, 2019, 25(7):885-891. [11] TAN J, ZHANG J, CHEN W,et al. The A395T mutation in ERG11gene xonfers fluconazole resistance in Candida tropicalis causing candidemia[J].Mycopathologia, 2015, 179:213-218.DOI:10.1007/s11046-014-9831-8 [12] JIANG C, DONG D N, YU B Q, et al.Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China[J]. J Antimicrob Chemother, 2013, 68(4):778-785.DOI:10.1093/jac/dks481 [13] CHOI M J, WON E J, SHIN J H, et al.Resistance mechanisms and clinical features of fluconazole-nonsusceptible Candida tropicalis isolates compared with fluconazole-less-susceptible isolates[J].Antimicrob Agents Chemother, 2016, 60(6):3653-3661. [14] FORASTIERO A, MESA-ARANGO A C, ALASTRUEY-IZQUIERDO A, et al. Candida tropicalis antifungal cross-resistance is related to different azole target (ERG11p) modifications[J].Antimicrob Agents Chemother, 2013, 57(10):4769-4781. [15] EDDOUZI J,PARKER J E, VALE-SILVA L A, et al.Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals[J].Antimicrob Agents Chemother, 2013, 57(7):3182-3193. [16] BARCHIESI F, CALABRESE D, SANGLARD D, et al.Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750[J].Antimicrob Agents Chemother, 2000, 44(6):1578-1584. [17] DE ANDRADE NETO J B, DA SILVA C R, CAMPOS R S, et al.Action mechanism of naphthofuranquinones against fluconazole-resistant Candida tropicalis strains evidenced by proteomic analysis:The role of increased endogenous ROS[J].Microb Pathog, 2018, 117:32-42.DOI:10.1016/j.micpath.2017.12.016. [18] JIANG C, DONG D, YU B, et al. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China[J]. J Antimicrob Chemother, 2013, 68(4):778-785. [19] KANANI A, ZAINI F, KORDBACHEH P, et al.Identification ofazole resistance markers in clinical isolates of Candida tropicalis using cDNA-AFLP method[J].J Clin Lab Anal, 2016, 30(3):266-272. [20] KHAN Z, AHMAD S, MOKADDAS E, et al.Development ofechinocandin resistance in Candida tropicalis following short-term exposure to caspofungin for empiric therapy[J].Antimicrob Agents Chemother, 2018, 62(4):e0192617. [21] XIAOM, FAN X, HOU X, et al.Clinical characteristics of the first cases of invasive candidiasis in China due to pan-echinocandin-resistant Candida tropicalis and Candida glabrata isolates with delineation of their resistance mechanisms[J].Infect Drug Resist, 2018, 11:155-161.DOI:10.2147/IDR.S152786. [22] SENEVIRATNE C J, RAJAN S, WONG S S, et al.Antifungal susceptibility in serum and virulence determinants of Candida bloodstream isolates from Hong Kong[J].Front Microbiol, 2016, 7:216.DOI:10.3389/fmicb.2016.00216. [23] BELENKY P, CAMACHO D, COLLINS J J.Fungicidal drugs induce a common oxidative-damage cellular death pathway[J].Cell Rep, 2013, 3(2):350-358. [24] VINCENT B M, LANCASTER A K, SCHERZ-SHOUVAL R, et al. Fitness trade-offs restrict the evolution of resistance to amphotericin B[J].PLoS Biol, 2013, 11(10):e1001692. [25] MESA-ARANGO A C, TREVIJANO-CONTADOR N, ROMáN E, et al.The production of reactive oxygen species is a universal action mechanism of amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug[J].Antimicrob Agents Chemother, 2014, 58(11):6627-6638. [26] MESA-ARANGO A C, RUEDA C, ROMáN E, et al. Cell wall changes in amphotericin B-resistant strains from Candida tropicalis and relationship with the immune responses elicited by the host[J].Antimicrob Agents Chemother, 2016, 60(4):2326-2335. [27] DESNOS-OLLIVIER M, BRETAGNE S, BERNèDE C, et al.Clonal population of flucytosine-resistant Candida tropicalis from blood cultures,Paris,France[J].Emerg Infect Dis, 2008, 14(4):557-565. [28] LI Z, YIN H, CHEN W, et al.Synergisticeffect of pseudolaric acid B with fluconazole against resistant isolates and biofilm of Candida tropicalis[J].Infect Drug Resist, 2020, 13:2733-2743.DOI:10.2147/IDR.S261298. [29] BRILHANTE R S N, BRASIL J A, OLIVEIA J S, et al.Diclofenac exhibits synergism with azoles against planktonic cells and biofilms of Candida tropicalis[J]. Biofouling, 2020, 36(5):528-536. [30] PATIL M, WANJARE S, BORSE V, et al.Arginolipid:A membrane-active antifungal agent and its synergistic potential to combat drug resistance in clinical Candida isolates[J].Arch Pharm Chem Life Sci, 2020, 353(1):e1900180. [31] VILA T, ISHIDA K, SEABRA S H, et al.Miltefosine inhibits Candida albicans and non-albicans Candida spp,biofilms and impairs the dispersion of infectious cells[J]. Int J Antimicrob Agents, 2016, 48(5):512-520. [32] ISHIDA K, FERNANDES RODRIGUES J C, CAMMERER S, et al.Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis[J]. Ann Clin Microbiol Antimicrob, 2011, 10:3. DOI:10.1186/1476-0711-10-3. [33] YIN W, CUI H, JIANG H, et al.Broadening antifungal spectrum and improving metabolic stablity based on a scaffold strategy:Design, synthesis, and evaluation of novel 4-phenyl-4, 5-dihydrooxazole derivatives as potent fungistatic and fungicidal reagents[J]. Eur J Med Chem, 2022, 227:113955.DOI:10.1016/j.ejmech.2021.113955. [34] GONZáLEZ-CHáVEZ R, MARTíNEZ R, TORRE-BOUSCOULET M E, et al.De novo design of non-coordinating indolones as potential inhibitors for lanosterol 14-α-demethylase (CYP51)[J]. Chem Pharm Bull, 2014, 62(1):16-24. [35] SCORNEAUX B, ANGULO D, BORROTO-ESODA K, et al. SCY-078 is fungicidal against Candida species in time-kill studies[J].Antimicrob Agents Chemother, 2017, 61(3):e0196116. |
[1] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 188-192. |
[2] | . [J]. Chinese Journal of Mycology, 2023, 18(1): 58-64. |
[3] | . [J]. Chinese Journal of Mycology, 2023, 18(1): 80-85. |
[4] | HUANG Yue, CAI Liangqi, ZHANG Ziping, CHENG Bo. Influence of CHK1 gene on ultrastrcture and fIuconazole susceptibility of Candida albicans [J]. Chinese Journal of Mycology, 2022, 17(4): 265-268,288. |
[5] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 315-318,329. |
[6] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 319-323. |
[7] | YANG Cheng, QIAO Yunlong, LI Rongyu, XIONG Yanjing, TANG Xingli. Antifungal activity of Bacillus velezensis Y6 peptide against Candida albicans [J]. Chinese Journal of Mycology, 2022, 17(3): 183-187,194. |
[8] | . [J]. Chinese Journal of Mycology, 2022, 17(3): 231-234. |
[9] | . [J]. Chinese Journal of Mycology, 2022, 17(3): 251-254. |
[10] | CHENG Wei, DENG Jing, LIU Ya, SHU Ling, CHEN Zhixing, DAI Zhongqiu, KANG Mei. Clinical and laboratory analysis of bloodstream infection caused by Candida tropicalis [J]. Chinese Journal of Mycology, 2022, 17(2): 99-102,114. |
[11] | HU Jing, LI Aihong, FENG Jinrong. Using Galleria mellonella model to investigate the role of SMT3 gene in regulating pathogenicity of Candida albicans [J]. Chinese Journal of Mycology, 2022, 17(2): 103-108. |
[12] | . [J]. Chinese Journal of Mycology, 2022, 17(2): 158-162. |
[13] | SONG Yang, HE Jing, HE Chun. Distribution and epidemic trend of Candida isolates from patients with oral candidiasis [J]. Chinese Journal of Mycology, 2021, 16(3): 166-169,181. |
[14] | . [J]. Chinese Journal of Mycology, 2021, 16(3): 202-206. |
[15] | HUANG Jing-jing, FAN Xin, XIAO Meng, XU Zhi-peng, ZHANG Ge, XU Ying-chun. Impact of different culture conditions on the identification of Candida krusei clinical isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system [J]. Chinese Journal of Mycology, 2020, 15(5): 262-267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||