Chinese Journal of Mycology 2023, Vol. 18 Issue (1): 65-70.
Previous Articles Next Articles
Received:
2022-08-02
Published:
2023-03-17
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/
http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/Y2023/V18/I1/65
[1] VON LILIENFELD-TOAL M, WAGENER J, EINSELE H, et al. Invasive fungal infection[J]. Dtsch Arztebl Int, 2019, 116(16):271-278. [2] LIMON J J, SKALSKI J H, UNDERHILL D M. Commensal fungi in health and disease[J]. Cell Host Microbe, 2017, 22(2):156-165. [3] BELKAID Y, HARRISON O J. Homeostatic immunity and the microbiota[J]. Immunity, 2017, 46(4):562-576. [4] LITVAK Y, BäUMLER A J. Microbiota-nourishing Iimmunity:A guide to understanding our microbial self[J]. Immunity, 2019, 51(2):214-224. [5] RUTSCH A, KANTSJ J B, RONCHI F. The gut-brain axis:How microbiota and host inflammasome influence brain physiology and pathology[J]. Front Immunol, 2020, 11:604179.DOI:10.3389/fimmu.2020.604179. [6] NASH A K, AUCHTUNG T A, WONG M C, et al. The gut mycobiome of the human microbiome project healthy cohort[J]. Microbiome, 2017, 5(1):153. [7] AUCHTUNG T A, FOFANOVA T Y, STEWART C J, et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi[J]. mSphere, 2018, 3(2):e00092-18. [8] RAIMONDI S, AMARETTI A, GOZZOLI C, et al. Longitudinal survey of fungi in the human gut:ITS profiling, phenotyping and colonization[J]. Front Microbiol, 2019, 0:575.DOI:10.3389/fmicb.2019.01575. [9] ODDS F C, DAVIDSON A D, JACOBSEN M D, et al. Candida albicans strain maintenance, replacement, and microvariation demonstrated by multilocus sequence typing[J]. J Clin Microbiol, 2006, 44(10):3647-3658. [10] STANDAERT-VITSE A, JOUAULT T, VANDEWALLE P, et al. Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn's disease[J]. Gastroenterology, 2006, 130(6):1764-1775. [11] LIMON J J, TANG J, LI D, et al. Malassezia is associated with Crohn's disease and exacerbates colitis in mouse models[J]. Cell Host Microbe, 2019, 25(3):377-388.e6. [12] SHAO T Y, ANG W X G, JIANG T T, et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses[J]. Cell Host Microbe, 2019, 25(3):404-417.e6. [13] DRELL T, LILLSAAR T, TUMMELEHT L, et al. Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women[J]. PLoS One, 2013, 8(1):e54379. [14] D'ENFERT C, KAUNE A K, ALABAN L R, et al. The impact of the fungus-host-microbiota interplay upon Candida albicans infections:current knowledge and new perspectives[J]. FEMS Microbiol Rev, 2021, 45(3):fuaa060. [15] MUKHERJEE P K, CHANDRA J, RETUERTO M, et al. Oral mycobiome analysis of HIV-infected patients:identification of Pichia as an antagonist of opportunistic fungi[J]. PLoS Pathog, 2014, 10(3):e1003996. [16] NGUYEN L D, VISCOGLIOSI E, DELHAES L. The lung mycobiome:an emerging field of the human respiratory microbiome[J]. Front Microbiol, 2015, 6:89.DOI:10.3389/fmicb.2015.00089. [17] GONçALVES S M, LAGROU K, DUARTE-OLIVEIRA C, et al. The microbiome-metabolome crosstalk in the pathogenesis of respiratory fungal diseases[J]. Virulence, 2017, 8(6):673:684. [18] BACHER P, HOHNSTEIN T, BEERBAUM E, et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans[J]. Cell, 2019, 176(6):1340-1355.e15. [19] FINDLEY K, OH J, YANG J, et al. Topographic diversity of fungal and bacterial communities in human skin[J]. Nature, 2013, 498(7454):367-370. [20] VLACHOS C, SCHULTE B M, MAGIATIS P, et al. Malassezia-derived indoles activate the aryl hydrocarbon receptor and inhibit Toll-like receptor-induced maturation in monocyte-derived dendritic cells[J]. Br J Dermatol, 2012, 167(3):496-505. [21] GAITANIS G, MAGIATIS P, STATHOPOULOU K, et al. AhR ligands, malassezin, and indolo carbazole are selectively produced by Malassezia furfur strains isolated from seborrheic dermatitis[J]. J Invest Dermatol, 2008, 128(7):1620-1625. [22] SOBEL J D. Vulvovaginal candidosis[J]. Lancet, 2007, 369(9577):1961-1971. [23] BUKHARIN O V, VALYSHEV A V, PERUNOVA N B, et al. Bacterial-fungal associations in the intestine under the conditions of colonization by yeast-like fungi of the genus Candida[J]. Zh Mikrobiol Epidemiol Immunobiol, 2002, 5):45-48. [24] SMEEKENS S P, HUTTENHOWER C, RIZA A, et al. Skin microbiome imbalance in patients with STAT1/STAT3 defects impairs innate host defense responses[J]. J Innate Immun, 2014, 6(3):253-262. [25] ROBINETT N G, CULBERTSON E M, PETERSON R L, et al. Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis[J]. J Biol Chem, 2019, 294(8):2700-2713. [26] LEãO M V, GONçALVES E SILVA C R, SANTOS S S, et al.[J]. Rev Bras Ginecol Obstet, 2015, 37(9):417-420. [27] WANG F, XIN C, LIU J, et al. Interactions between invasive fungi and symbiotic bacteria[J]. World J Microbiol Biotechnol, 2020, 36(9):137. [28] RAUTELA R, SINGH A K, SHUKLA A, et al. Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans[J]. Antonie Van Leeuwenhoek, 2014, 105(5):809-821. [29] ALONSO-ROMAN R, LAST A, MIRHAKKAK M H, et al. Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity[J]. Nat Commun, 2022, 13(1):3192. [30] RELLA A, YANG M W, GRUBER J, et al. Pseudomonas aeruginosa inhibits the growth of Cryptococcus species[J]. Mycopathologia, 2012, 173(5-6):451-461. [31] ZELANTE T, IANNITTI R G, CUNHA C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22[J]. Immunity, 2013, 39(2):372-385. [32] MCALEER J P, NGUYEN N L, CHEN K, et al. Pulmonary Th17 antifungal immunity is regulated by the gut microbiome[J]. J Immunol, 2016, 197(1):97-107. [33] KUMAR P, MONIN L, CASTILLO P, et al. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation[J]. Immunity, 2016, 44(3):659-671. [34] NAIK S, BOULADOUX N, LINEHAN J L, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature[J]. Nature, 2015, 520(7545):104-108. [35] ST LEGER A J, DESAI J V, DRUMMOND R A, et al. An ocular commensal protects against corneal infection by driving an interleukin-17 response from mucosal γδ T Cells[J]. Immunity, 2017, 47(1):148-158.e5. [36] FAN D, COUGHLIN L A, NEUBAUER M M, et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization[J]. Nat Med, 2015, 21(7):808-814. [37] ROMANI L, ZELANTE T, DE LUCA A, et al. Microbiota control of a tryptophan-AhR pathway in disease tolerance to fungi[J]. Eur J Immunol, 2014, 44(11):3192-3200. [38] DORON I, LEONARDI I, LI X V, et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies[J]. Cell, 2021, 184(4):1017-1031.e14. [39] MILLET N, SOLIS N V, SWIDERGALL M. Mucosal IgA prevents commensal Candida albicans dysbiosis in the oral cavity[J]. Front Immunol, 2020, 11:555363. DOI:10.3389/fimmu.2020.555363. [40] SADEGHI G, EBRAHIMI-RAD M, SHAMS-GHAHFAROKHI M, et al. Cutaneous candidiasis in Tehran-Iran:from epidemiology to multilocus sequence types, virulence factors and antifungal susceptibility of etiologic Candida species[J]. Iran J Microbiol, 2019, 11(4):267-279. |
[1] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 167-171. |
[2] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 178-182. |
[3] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 188-192. |
[4] | HUANG Yue, CAI Liangqi, ZHANG Ziping, CHENG Bo. Influence of CHK1 gene on ultrastrcture and fIuconazole susceptibility of Candida albicans [J]. Chinese Journal of Mycology, 2022, 17(4): 265-268,288. |
[5] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 315-318,329. |
[6] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 319-323. |
[7] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 324-329. |
[8] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 330-334. |
[9] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 335-338. |
[10] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 349-352. |
[11] | YANG Cheng, QIAO Yunlong, LI Rongyu, XIONG Yanjing, TANG Xingli. Antifungal activity of Bacillus velezensis Y6 peptide against Candida albicans [J]. Chinese Journal of Mycology, 2022, 17(3): 183-187,194. |
[12] | PENG Zhuoying, LIAO Yong, BA Gen, YANG Xin, ZHANG Qianyu, YANG Rongya. The effects of microevolution on Trichosporon assahii infection [J]. Chinese Journal of Mycology, 2022, 17(3): 213-219. |
[13] | . [J]. Chinese Journal of Mycology, 2022, 17(3): 231-234. |
[14] | . [J]. Chinese Journal of Mycology, 2022, 17(3): 251-254. |
[15] | . [J]. Chinese Journal of Mycology, 2022, 17(3): 255-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||