Chinese Journal of Mycology 2023, Vol. 18 Issue (1): 58-64.
Previous Articles Next Articles
Received:
2022-05-30
Published:
2023-03-17
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/
http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/Y2023/V18/I1/58
[1] GABALDON T, GOMEZ-MOLRO E, BADER O. Molecular typing of Candida glabrata[J]. Mycopathologia, 2020,185(5):755-764. [2] RASHEED M, KUMAR N, KAUR R. Global secretome characterization of the pathogenic yeast Candida glabrata[J]. J Proteome Res, 2020,19(1):49-63. [3] LOTFALI E, FATTAHI A, SAYYAHFAR S, et al. A review on molecular mechanisms of antifungal resistance in Candida glabrata: Update and recent advances[J]. Microb Drug Resist, 2021,27(10):1371-1388. [4] HASSAN Y, CHEW S Y, THAN L. Candida glabrata: pathogenicity and resistance mechanisms for adaptation and survival[J]. J Fungi (Basel), 2021,7(8):667. [5] KUMAR K, ASKARI F, SAHU M S, et al. Candida glabrata: A lot more than meets the eye[J]. Microorganisms, 2019,7(2):39. [6] LóPEZ-FUENTES E, GUTIéRREZ-ESCOBEDO G, TIMMERMANS B, et al. Candida glabrata's genome plasticity confers a unique pattern of expressed cell wall proteins[J]. J Fungi (Basel), 2018,4(2):67. [7] SILVA S, NEGRI M, HENRIQUES M, et al. Adherence and biofilm formation of non-Candida albicans Candida species[J]. Trends Microbiol, 2011,19(5):241-247. [8] TIMMERMANS B, DE LAS PEñAS A, CASTAñO I, et al. Adhesins in Candida glabrata[J]. J Fungi (Basel), 2018,4(2):60. [9] ZHAO J T, CHEN K Z, LIU J Y, et al. FLO8 deletion leads to decreased adhesion and virulence with downregulated expression of EPA1, EPA6, and EPA7 in Candida glabrata[J]. Braz J Microbiol, 2022,53(2):727-738. [10] DESAI C, MAVRIANOS J, CHAUHAN N. Candida glabrata Pwp7p and Aed1p are required for adherence to human endothelial cells[J]. FEMS Yeast Res, 2011,11(7):595-601. [11] TAM P, GEE K, PIECHOCINSKI M, et al. Candida glabrata, Friend and Foe[J]. J Fungi (Basel), 2015,1(2):277-292. [12] FIGUEIREDO-CARVALHO M H, RAMOS LDE S, BARBEDO L S, et al. First description of Candida nivariensis in Brazil: antifungal susceptibility profile and potential virulence attributes[J]. Mem Inst Oswaldo Cruz, 2016,111(1):51-58. [13] KALKANCI A, GüZEL A B, KHALIL I I, et al. Yeast vaginitis during pregnancy: susceptibility testing of 13 antifungal drugs and boric acid and the detection of four virulence factors[J]. Med Mycol, 2012,50(6):585-593. [14] GALOCHA M, PAIS P, CAVALHEIRO M, et al. Divergent approaches to virulence in C. albicans and C. glabrata: Two sides of the same coin[J]. Int J Mol Sci, 2019,20(9):2345. [15] NETT J E, ANDES D R. Contributions of the biofilm matrix to Candida pathogenesis[J]. J Fungi (Basel), 2020,6(1):21. [16] KRANEVELD E A, DE SOET J J, DENG D M, et al. Identification and differential gene expression of adhesin-like wall proteins in Candida glabrata biofilms[J]. Mycopathologia, 2011,172(6):415-427. [17] SANTOS R, COSTA C, MIL-HOMENS D, et al. The multidrug resistance transporters CgTpo1_1 and CgTpo1_2 play a role in virulence and biofilm formation in the human pathogen Candida glabrata[J]. Cell Microbiol, 2017,19(5). DOI: 10.1111/cmi.12686. [18] CHEN X, IWATANI S, KITAMOTO T, et al. The lack of SNARE protein homolog Syn8 influences biofilm formation of Candida glabrata[J]. Front Cell Dev Biol, 2021,9:607188. [19] ALVES R, BARATA-ANTUNES C, CASAL M, et al. Adapting to survive: How Candida overcomes host-imposed constraints during human colonization[J]. PLoS Pathog, 2020,16(5):e1008478. [20] KALAIARASAN K, SINGH R, CHATURVEDULA L. Changing virulence factors among vaginal non-albicans Candida species[J]. Indian J Med Microbiol, 2018,36(3):364-368. [21] ATALAY M A, KOC A N, DEMIR G, et al. Investigation of possible virulence factors in Candida strains isolated from blood cultures[J]. Niger J Clin Pract, 2015,18(1):52-55. [22] YAGMUR G, SAV H, ZIYADE N, et al. Evaluation of virulence factors and antifungal susceptibility in yeast isolates from postmortem specimens[J]. J Forensic Sci, 2016,61(4):1000-1006. [23] VIEIRA DE MELO A P, ZUZA-ALVES D L, DA SILVA-ROCHA W P, et al. Virulence factors of Candida spp. obtained from blood cultures of patients with candidemia attended at tertiary hospitals in Northeast Brazil[J]. J Mycol Med, 2019,29(2):132-139. [24] GONçALVES B, FERNANDES L, HENRIQUES M, et al. Environmental pH modulates biofilm formation and matrix composition in Candida albicans and Candida glabrata[J]. Biofouling, 2020,36(5):621-630. [25] GONçALVES B, AZEVEDO N M, HENRIQUES M, et al. Hormones modulate Candida vaginal isolates biofilm formation and decrease their susceptibility to azoles and hydrogen peroxide[J]. Med Mycol, 2020,58(3):341-350. [26] OLSON M L, JAYARAMAN A, KAO K C. Relative Abundances of Candida albicans and Candida glabrata in in vitro coculture biofilms impact biofilm structure and formation[J]. Appl Environ Microbiol, 2018,84(8):e02769-17. [27] BETTINGER J A, DE SERRES G, VALIQUETTE L, et al. 2017/18 and 2018/19 seasonal influenza vaccine safety surveillance, Canadian National Vaccine Safety (CANVAS) Network[J]. Euro Surveill, 2020,25(22):1900470. [28] 刘朝阳, 唐璟, 杨宏宇,等. 氯己定联合抗真菌药物抗念珠菌生物膜效应[J]. 临床口腔医学杂志,2019,35(9):519-521. [29] GONçALVES B, FERREIRA C, ALVES C T, et al. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors[J]. Crit Rev Microbiol, 2016,42(6):905-927. [30] KAAN Ö, KOç A N, ATALAY M A, et al. Molecular epidemiology, antifungal susceptibility and virulence factors of Candida glabrata complex strains in Kayseri/Turkey[J]. Microb Pathog, 2021,154:104870. [31] RAPALA-KOZIK M, BOCHENSKA O, ZAJAC D, et al. Extracellular proteinases of Candida species pathogenic yeasts[J]. Mol Oral Microbiol, 2018,33(2):113-124. [32] SWOBODA-KOPE E, SIKORA M, GOLAS M, et al. Candida nivariensis in comparison to different phenotypes of Candida glabrata[J]. Mycoses, 2014,57(12):747-753. [33] BAIRWA G, KAUR R. A novel role for a glycosylphosphatidylinositol-anchored aspartyl protease, CgYps1, in the regulation of pH homeostasis in Candida glabrata[J]. Mol Microbiol, 2011,79(4):900-913. [34] SRIPHANNAM C, NUANMUANG N, SAENGSAWANG K, et al. Anti-fungal susceptibility and virulence factors of Candida spp. isolated from blood cultures[J]. J Mycol Med, 2019,29(4):325-330. [35] RICETO É B, MENEZES RDE P, PENATTI M P, et al. Enzymatic and hemolytic activity in different Candida species[J]. Rev Iberoam Micol, 2015,32(2):79-82. [36] MUTLU SARIGUZEL F, BERK E, KOC A N, et al. Investigation of the relationship between virulence factors and genotype of Candida spp. isolated from blood cultures[J]. J Infect Dev Ctries, 2015,9(8):857-864. [37] PEREIRA C A, DOMINGUES N, ARAúJO M I, et al. Production of virulence factors in Candida strains isolated from patients with denture stomatitis and control individuals[J]. Diagn Microbiol Infect Dis, 2016,85(1):66-72. [38] BARBOSA A H, DAMASCENO J L, CASEMIRO L A, et al. Susceptibility to oral antiseptics and virulence factors ex vivo associated with Candida spp. isolated from dental prostheses[J]. J Prosthodont, 2019,28(4):398-408. [39] HERNANDO-ORTIZ A, MATEO E, ORTEGA-RIVEROS M, et al. Caenorhabditis elegans as a Model system to assess Candida glabrata, Candida nivariensis, and Candida bracarensis virulence and antifungal efficacy[J]. Antimicrob Agents Chemother, 2020,64(10) [40] KUMARI V, BANERJEE T, KUMAR P, et al. Emergence of non-albicans Candida among candidal vulvovaginitis cases and study of their potential virulence factors, from a tertiary care center, North India[J]. Indian J Pathol Microbiol, 2013,56(2):144-147. [41] PEREIRA C A, DOMINGUES N, ARAúJO M I, et al. Production of virulence factors in Candida strains isolated from patients with denture stomatitis and control individuals[J]. Diagn Microbiol Infect Dis, 2016,85(1):66-72. [42] FATAHINIA M, POORMOHAMADI F, ZAREI MAHMOUDABADI A. Comparative study of esterase and hemolytic activities in clinically important Candida species, isolated from oral cavity of diabetic and non-diabetic individuals[J]. Jundishapur J Microbiol, 2015,8(3):e20893. [43] FIGUEIREDO-CARVALHO M, RAMOS L S, BARBEDO L S, et al. Relationship between the antifungal susceptibility profile and the production of virulence-related hydrolytic enzymes in Brazilian clinical strains of Candida glabrata[J]. Mediators Inflamm, 2017,2017:8952878. [44] SRIVASTAVA V K, SUNEETHA K J, KAUR R. A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in Candida glabrata[J]. Biochem J, 2014,463(1):103-114. [45] CHEN S M, SHEN H, ZHANG T, et al. Dectin-1 plays an important role in host defense against systemic Candida glabrata infection[J]. Virulence, 2017,8(8):1643-1656. [46] BALLOU E R, AVELAR G M, CHILDERS D S, et al. Lactate signalling regulates fungal β-glucan masking and immune evasion[J]. Nat Microbiol, 2016,2:16238. [47] SEIDER K, BRUNKE S, SCHILD L, et al. The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation[J]. J Immunol, 2011,187(6):3072-3086. [48] SEIDER K, GERWIEN F, KASPER L, et al. Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages[J]. Eukaryot Cell, 2014,13(1):170-183. [49] GERWIEN F, SAFYAN A, WISGOTT S, et al. The fungal pathogen Candida glabrata does not depend on surface ferric reductases for iron acquisition[J]. Front Microbiol, 2017,8:1055. [50] SHARMA V, PURUSHOTHAM R, KAUR R. The phosphoinositide 3-kinase regulates retrograde trafficking of the iron permease CgFtr1 and iron homeostasis in Candida glabrata[J]. J Biol Chem, 2016,291(47):24715-24734. [51] SRIVASTAVA V K, SUNEETHA K J, KAUR R. The mitogen-activated protein kinase CgHog1 is required for iron homeostasis, adherence and virulence in Candida glabrata[J]. FEBS J, 2015,282(11):2142-2166. [52] THIéBAUT A, DELAVEAU T, BENCHOUAIA M, et al. The CCAAT-binding complex controls respiratory gene expression and iron homeostasis in Candida glabrata[J]. Sci Rep, 2017,7(1):3531. [53] HE C, ZHOU C, KENNEDY B K. The yeast replicative aging model[J]. Biochim Biophys Acta Mol Basis Dis, 2018,1864(9 Pt A):2690-2696. [54] BOUKLAS T, ALONSO-CRISóSTOMO L, SZéKELY T JR, et al. Generational distribution of a Candida glabrata population: Resilient old cells prevail, while younger cells dominate in the vulnerable host[J]. PLoS Pathog, 2017,13(5):e1006355. [55] BHATTACHARYA S, HOLOWKA T, ORNER E P, et al. Gene duplication associated with increased fluconazole tolerance in Candida auris cells of advanced generational Age[J]. Sci Rep, 2019,9(1):5052. [56] YU S J, CHANG Y L, CHEN Y L. Deletion of ADA2 increases antifungal drug susceptibility and virulence in Candida glabrata[J]. Antimicrob Agents Chemother, 2018,62(3):e01924-17. [57] CORNET M, GAILLARDIN C. pH signaling in human fungal pathogens: a new target for antifungal strategies[J]. Eukaryot Cell, 2014,13(3):342-352. [58] GONG Y, LI T, YU C, et al. Candida albicans heat shock proteins and Hsps-associated signaling pathways as potential antifungal Targets[J]. Front Cell Infect Microbiol, 2017,7:520. [59] CUéLLAR-CRUZ M, BRIONES-MARTIN-DEL-CAMPO M, CAñAS-VILLAMAR I, et al. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p[J]. Eukaryot Cell, 2008,7(5):814-825. [60] ROETZER A, GREGORI C, JENNINGS A M, et al. Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors[J]. Mol Microbiol, 2008,69(3):603-620. [61] BRIONES-MARTIN-DEL-CAMPO M, ORTA-ZAVALZA E, CAñAS-VILLAMAR I, et al. The superoxide dismutases of Candida glabrata protect against oxidative damage and are required for lysine biosynthesis, DNA integrity and chronological life survival[J]. Microbiology (Reading), 2015,161(Pt 2):300-310. [62] GUTIéRREZ-ESCOBEDO G, ORTA-ZAVALZA E, CASTAñO I, et al. Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata[J]. Curr Genet, 2013,59(3):91-106. [63] FRíAS-DE-LEóN M G, HERNáNDEZ-CASTRO R, CONDE-CUEVAS E, et al. Candida glabrata antifungal resistance and virulence factors, a perfect pathogenic combination[J]. Pharmaceutics, 2021,13(10):1529. [64] HULL C M, PARKER J E, BADER O, et al. Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation inERG11 and exhibiting cross-resistance to azoles and amphotericin B[J]. Antimicrob Agents Chemother, 2012,56(8):4223-4232. [65] JENSEN R H, JOHANSEN H K, SøES L M, et al. Posttreatment antifungal resistance among colonizing Candida Isolates in candidemia patients: results from a systematic multicenter study[J]. Antimicrob Agents Chemother, 2015,60(3):1500-1508. [66] YAO D, CHEN J, CHEN W, et al. Mechanisms of azole resistance in clinical isolates of Candida glabrata from two hospitals in China[J]. Infect Drug Resist, 2019,12:771-781. [67] HOU X, XIAO M, WANG H, et al. Profiling of PDR1 and MSH2 in Candida glabrata bloodstream isolates from a multicenter study in China[J]. Antimicrob Agents Chemother, 2018,62(6):e00153-18. [68] CULAKOVA H, DZUGASOVA V, PERZELOVA J, et al. Mutation of the CgPDR16 gene attenuates azole tolerance and biofilm production in pathogenic Candida glabrata[J]. Yeast, 2013,30(10):403-414. [69] PAIS P, CALIFóRNIA R, GALOCHA M, et al. Candida glabrata transcription factor rpn4 mediates fluconazole resistance through regulation of ergosterol biosynthesis and plasma membrane permeability[J]. Antimicrob Agents Chemother, 2020,64(9):e00554-20. [70] SHIELDS R K, KLINE E G, HEALEY K R, et al. Spontaneous mutational frequency and FKS mutation rates vary by echinocandin agent against Candida glabrata[J]. Antimicrob Agents Chemother, 2019,63(1):e01692-18. DOI: 10.1128/AAC.01692-18. [71] PRASAD R, NAIR R, BANERJEE A. Emerging mechanisms of drug resistance in Candida albicans[J]. Prog Mol Subcell Biol, 2019,58:135-153. [72] RODRIGUES C F, SILVA S, HENRIQUES M. Candida glabrata: a review of its features and resistance[J]. Eur J Clin Microbiol Infect Dis, 2014,33(5):673-688. [73] SILVA S, NEGRI M, HENRIQUES M, et al. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance[J]. FEMS Microbiol Rev, 2012,36(2):288-305. [74] YU S J, CHANG Y L, CHEN Y L. Deletion of ADA2 increases antifungal drug susceptibility and virulence in Candida glabrata[J]. Antimicrob Agents Chemother, 2018,62(3):e01924-17. [75] CHEN K H, MIYAZAKI T, TSAI H F, et al. The bZip transcription factor Cgap1p is involved in multidrug resistance and required for activation of multidrug transporter gene CgFLR1 in Candida glabrata[J]. Gene, 2007,386(1-2):63-72. [76] CIOFU O, MOSER C, JENSEN P Ø, et al. Tolerance and resistance of microbial biofilms[J]. Nat Rev Microbiol, 2022,20(10):621-635. |
[1] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 178-182. |
[2] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 188-192. |
[3] | HUANG Yue, CAI Liangqi, ZHANG Ziping, CHENG Bo. Influence of CHK1 gene on ultrastrcture and fIuconazole susceptibility of Candida albicans [J]. Chinese Journal of Mycology, 2022, 17(4): 265-268,288. |
[4] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 315-318,329. |
[5] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 319-323. |
[6] | YANG Cheng, QIAO Yunlong, LI Rongyu, XIONG Yanjing, TANG Xingli. Antifungal activity of Bacillus velezensis Y6 peptide against Candida albicans [J]. Chinese Journal of Mycology, 2022, 17(3): 183-187,194. |
[7] | . [J]. Chinese Journal of Mycology, 2022, 17(3): 231-234. |
[8] | . [J]. Chinese Journal of Mycology, 2022, 17(3): 251-254. |
[9] | CHENG Wei, DENG Jing, LIU Ya, SHU Ling, CHEN Zhixing, DAI Zhongqiu, KANG Mei. Clinical and laboratory analysis of bloodstream infection caused by Candida tropicalis [J]. Chinese Journal of Mycology, 2022, 17(2): 99-102,114. |
[10] | HU Jing, LI Aihong, FENG Jinrong. Using Galleria mellonella model to investigate the role of SMT3 gene in regulating pathogenicity of Candida albicans [J]. Chinese Journal of Mycology, 2022, 17(2): 103-108. |
[11] | . [J]. Chinese Journal of Mycology, 2022, 17(2): 158-162. |
[12] | SONG Yang, HE Jing, HE Chun. Distribution and epidemic trend of Candida isolates from patients with oral candidiasis [J]. Chinese Journal of Mycology, 2021, 16(3): 166-169,181. |
[13] | . [J]. Chinese Journal of Mycology, 2021, 16(3): 202-206. |
[14] | HUANG Jing-jing, FAN Xin, XIAO Meng, XU Zhi-peng, ZHANG Ge, XU Ying-chun. Impact of different culture conditions on the identification of Candida krusei clinical isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system [J]. Chinese Journal of Mycology, 2020, 15(5): 262-267. |
[15] | . [J]. Chinese Journal of Mycology, 2020, 15(3): 183-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||