Chinese Journal of Mycology 2023, Vol. 18 Issue (1): 53-57.
Previous Articles Next Articles
Received:
2022-04-19
Published:
2023-03-17
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/
http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/Y2023/V18/I1/53
[1] PAULUSSEN C, HALLSWORTH J E, ÁLVAREZ-PÉREZ S, et al. Ecology of aspergillosis:insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species[J]. Microb Biotechnol, 2017, 10(2):296-322. [2] TISCHLER B Y, HOHL T M. Menacing mold:recent advances in Aspergillus pathogenesis and host defense[J]. J Mol Biol, 2019, 431(21):4229-4246. [3] JEANVOINE A, ROCCHI S, BELLANGER A P, et al. Azole-resistant Aspergillus fumigatus:A global phenomenon originating in the environment[J]?Med Mal Infect, 2020, 50(5):389-395. [4] BRANDÃO I S L, OLIVEIRA-MORAES H, SOUZA MOTTA C M, et al. Elastin increases biofilm and extracellular matrix production of Aspergillus fumigatus[J]. Braz J Microbiol, 2018, 49(3):675-682. [5] PERDONI F, SIGNORELLI P, CIRASOLA D, et al. Antifungal activity of Myriocin on clinically relevant Aspergillus fumigatus strains producing biofilm[J]. BMC Microbiol,2015,15:248.DOI:10.1186/s12866-015-0588-0. [6] FERNÁNDEZ DE ULLIVARRI M, ARBULU S, GARCIA-GUTIERREZ E, et al. Antifungal peptides as therapeutic agents[J]. Front Cell Infect Microbiol, 2020, 10:105. DOI:10.3389/fcimb.2020.00105. [7] BERMAN J, KRYSAN D J. Drug resistance and tolerance in fungi[J]. Nat Rev Microbiol, 2020, 18(6):319-331. [8] REICHHARDT C, STEVENS D A, CEGELSKI L. Fungal biofilm composition and opportunities in drug discovery[J]. Future Med Chem, 2016, 8(12):1455-1468. [9] LE MAUFF F, BAMFORD N C, ALNABELSEYA N, et al. Molecular mechanism of Aspergillus fumigatus biofilm disruption by fungal and bacterial glycoside hydrolases[J]. J Biol Chem, 2019, 294(28):10760-10772. [10] SALES-CAMPOS H, TONANI L, CARDOSO C R, et al. The immune interplay between the host and the pathogen in Aspergillus fumigatus lung infection[J]. Biomed Res Int, 2013, 2013:693023. DOI:10.1155/2013/693023 [11] ROILIDES E, SIMITSOPOULOU M, KATRAGKOU A, et al. How biofilms evade host defenses[J]. Microbiol Spectr, 2015, 3(3). DOI:10.1128/microbiolspec.MB-0012-2014 [12] CAMPOCCIA D, MIRZAEI R, MONTANARO L, et al. Hijacking of immune defences by biofilms:a multifront strategy[J]. Biofouling, 2019, 35(10):1055-1074. [13] HERNÁNDEZ-CHÁVEZ M J, PÉREZ-GARCÍA L A, NIÑO-VEGA G A, et al. Fungal strategies to evade the host immune recognition[J]. J Fungi (Basel), 2017, 3(4). DOI:10.3390/jof3040051 [14] ALMATAR M, ALBARRI O, MAKKY EA, et al. Efflux pump inhibitors:new updates[J]. Pharmacol Rep, 2021, 73(1):1-16. [15] CANNON R D, LAMPING E, HOLMES A R, et al. Efflux-mediated antifungal drug resistance[J]. Clin Microbiol Rev, 2009, 22(2):291-321, Table of Contents. [16] NIERMAN W C, PAIN A, ANDERSON M J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus[J]. Nature, 2005, 438(7071):1151-1156. [17] DA SILVA FERREIRA M E, CAPELLARO J L, DOS REIS MARQUES E, et al. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance[J]. Antimicrob Agents Chemother, 2004, 48(11):4405-4413. [18] CHAMILOS G, KONTOYIANNIS D P. Update on antifungal drug resistance mechanisms of Aspergillus fumigatus[J]. Drug Resist Updat, 2005, 8(6):344-358. [19] BOJSEN R, REGENBERG B, FOLKESSON A. Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase[J]. BMC Microbiol, 2014, 14:305.DOI:10.1186/s12866-014-0305-4. [20] LAFLEUR M D, KUMAMOTO C A, LEWIS K. Candida albicans biofilms produce antifungal-tolerant persister cells[J]. Antimicrob Agents Chemother, 2006, 50(11):3839-3846. [21] SUN N, LI D, FONZI W, et al. Multidrug-resistant transporter mdr1p-mediated uptake of a novel antifungal compound[J]. Antimicrob Agents Chemother, 2013, 57(12):5931-5939. [22] 刘登科, 牛虹博, 葛正茂, 等. 曲霉菌对唑类药物的耐药机制最新研究进展[J].现代检验医学杂志, 2020,35(2):161-164. [23] CHATTERJEE S, DAS S. Developmental stages of biofilm and characterization of extracellular matrix of manglicolous fungus Aspergillus niger BSC-1[J]. J Basic Microbiol, 2020, 60(3):231-242. [24] BEAUVAIS A, SCHMIDT C, GUADAGNINI S, et al. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus[J]. Cell Microbiol, 2007, 9(6):1588-600. [25] KARYGIANNI L, REN Z, KOO H, et al. Biofilm Matrixome:Extracellular components in structured microbial communities[J]. Trends Microbiol, 2020, 28(8):668-681. [26] MITCHELL K F, ZARNOWSKI R, ANDES D R. The extracellular matrix of fungal biofilms[J]. Adv Exp Med Biol, 2016, 931:21-35. DOI:10.1007/5584_2016_6. [27] MIYAZAWA K, YOSHIMI A, ABE K. The mechanisms of hyphal pellet formation mediated by polysaccharides, α-1,3-glucan and galactosaminogalactan, in Aspergillus species[J]. Fungal Biol Biotechnol, 2020, 7:10. DOI:10.1186/s40694-020-00101-4. [28] SPETH C, RAMBACH G, LASS-FLÖRL C, et al. Galactosaminogalactan (GAG) and its multiple roles in Aspergillus pathogenesis[J]. Virulence, 2019, 10(1):976-983. [29] BORGHI E, BORGO F, MORACE G. Fungal biofilms:update on resistance[J]. Adv Exp Med Biol, 2016, 931:37-47.DOI:10.1007/5584_2016_7. [30] VAN ACKER H, VAN DIJCK P, COENYE T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms[J]. Trends Microbiol, 2014, 22(6):326-333. [31] RAMAGE G, RAJENDRAN R, SHERRY L, et al. Fungal biofilm resistance[J]. Int J Microbiol, 2012, 2012:528521. DOI:10.1155/2012/528521. [32] WAINWRIGHT J, HOBBS G, NAKOUTI I. Persister cells:formation, resuscitation and combative therapies[J]. Arch Microbiol, 2021, 203(10):5899-5906. [33] LEWIS K. Multidrug tolerance of biofilms and persister cells[J]. Curr Top Microbiol Immunol, 2008, 322:107-131. DOI:10.1007/978-3-540-75418-3_6. [34] MAJIMA H, ARAI T, KUSUYA Y, et al. Genetic differences between Japan and other countries in cyp51A polymorphisms of Aspergillus fumigatus[J]. Mycoses, 2021, 64(11):1354-1365. [35] MORELLI K A, KERKAERT J D, CRAMER R A. Aspergillus fumigatus biofilms:Toward understanding how growth as a multicellular network increases antifungal resistance and disease progression[J]. PLoS Pathog, 2021, 17(8):e1009794. DOI:10.1371/journal.ppat.1009794 [36] ROBBINS N, UPPULURI P, NETT J, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms[J]. PLoS Pathog, 2011, 7(9):e1002257. DOI:10.1371/journal.ppat.1002257 [37] TU B, YIN G, LI H. Synergistic effects of vorinostat (SAHA) and azoles against Aspergillus species and their biofilms[J]. BMC Microbiol, 2020, 20(1):28. DOI:10.1186/s12866-020-1718-x [38] KOWALSKI CH, MORELLI KA, SCHULTZ D, et al. Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance[J]. Proc Natl Acad Sci U S A, 2020, 117(36):22473-22483. [39] LOUSSERT C, SCHMITT C, PREVOST M C, et al. In vivo biofilm composition of Aspergillus fumigatus[J]. Cell Microbiol, 2010, 12(3):405-410. [40] DONLAN R M, COSTERTON J W. Biofilms:survival mechanisms of clinically relevant microorganisms[J]. Clin Microbiol Rev, 2002, 15(2):167-193. |
[1] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 335-338. |
[2] | XU Fengjiao, LOU Xinyu, WANG Yuanzhou, HAN Ziyu, ZHONG Guowei. Transcriptome study of mouse bone marrow-derived macrophages infected by Aspergillus fumigatus spores [J]. Chinese Journal of Mycology, 2022, 17(2): 94-98. |
[3] | CHEN Xianzhen, ZHU Xinlin, JANG Weiwei, HU Dongying, ZHANG Keming, FANG Wenjie, PAN Weihua, LIU Xiaogang, LIAO Wanqing. Study on antifungal activity of nicotinamide and the synergistic effect of nicotinamide to itraconazole against Aspergillus fumigatus in vitro [J]. Chinese Journal of Mycology, 2022, 17(2): 124-128. |
[4] | XIE Yun, ZHANG Lijuan, PALIDAE·Abliz. A preliminary study on the virulence of Aspergillus lentulus isolated from a patient with COPD on the Galleria mellonella model [J]. Chinese Journal of Mycology, 2021, 16(3): 155-160. |
[5] | . [J]. Chinese Journal of Mycology, 2021, 16(3): 196-201. |
[6] | LI Ying, WANG He, ZHANG Ge, LIU Wen-jing, XU Ying-chun. Comparative evaluation of Sensititre YeastOne colorimetric panel with broth microdilution method for in vitro antifungal susceptibility testing of Aspergillus [J]. Chinese Journal of Mycology, 2020, 15(4): 197-201. |
[7] | ZHAO Rui, CHEN Fang-yan, HAN Li. Study on the expression of dual specificity phosphatase in alveolar epithelial cells during Aspergillus fumigatus infection [J]. Chinese Journal of Mycology, 2020, 15(3): 129-133. |
[8] | . [J]. Chinese Journal of Mycology, 2020, 15(2): 121-124. |
[9] | LIU Jing, XU Wen, TAN Zhi-wei, LIU Yao-yao, ZHOU Ling-ling, FU Yu, LONG Nan-biao. The construction of Aspergillus fumigatus mutant library and screening of itraconazole drug-resistant mutant [J]. Chinese Journal of Mycology, 2020, 15(1): 47-51. |
[10] | CAI Kai-xia, ZHOU Jing, CAO Wei, WANG Sheng-yu. Detecting galactomannan in bronchoalveolar lavage fluid for diagnosing invasive pulmonary aspergillosis: a meta-analysis [J]. Chinese Journal of Mycology, 2019, 14(5): 284-291. |
[11] | YU Shu-ying, ZHANG Li, LI Ying, XU Ying-chun. Evaluation of the in vitro antifungal activity of the domestic caspofungin against clinical Aspergillus isolates [J]. Chinese Journal of Mycology, 2019, 14(3): 141-146. |
[12] | DENG Jie-hua, LI JI-hong, QI Xiao-ming, WANG Gang-sheng. Comparison of sensitivity of cinnamaldehyde and caspofungin to Aspergillus oryzae and their effects on cell wall of Aspergillus fumigatus [J]. Chinese Journal of Mycology, 2018, 13(6): 345-349. |
[13] | LIU Xiao-yu, ZHANG Chang-jian, HU Ying-song, CHEN Fang-yan, HAN Li. Loss of phospholipase D in mice against Aspergillus fumigatus infection [J]. Chinese Journal of Mycology, 2018, 13(3): 129-133. |
[14] | TONG Jian-bo, ZENG Rong, LI Min. Research progress of Aspergillus fumigatus biofilms [J]. Chinese Journal of Mycology, 2018, 13(1): 61-64. |
[15] | ZHANG Xi, HAN Li. Molecular regulation on biosynthesis of β-1,3-glucan on cell wall of Aspergillus fumigatus [J]. Chinese Journal of Mycology, 2017, 12(5): 309-311,317. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||