[1] Paluchowska P, Tokarczyk M, Bogusz B, et al. Molecular epidemiology of Candida albicans and Candida glabrata strains isolated from intensive care unit patients in Poland[J]. Mem Inst Oswaldo Cruz, 2014,109(4):436-441.
[2] Patenaude C, Zhang Y, Cormack B, et al. Essential role for vacuolar acidification in Candida albicans virulence[J]. J Biol Chem, 2013,288(36):26256-26264.
[3] Andes DR, Safdar N, Baddley JW, et al. The epidemiology and outcomes of invasive Candida infections among organ transplant recipients in the United States:results of the Transplant-Associated Infection Surveillance Network (TRANSNET)[J]. Transpl Infect Dis, 2016,18(6):921-931.
[4] Forster C, Kane PM. Cytosolic Ca2+ Homeostasis Is a constitutive function of the V-ATPase inSaccharomyces cerevisiae[J]. J Biol Chem, 2000, 275(49):38245-53.
[5] Huang C, Chang A. pH-dependent cargo sorting from the Golgi[J]. J Biol Chem, 2011,286(12):10058-10065.
[6] Palmer GE. Vacuolar trafficking and Candida albicans pathogenesis[J]. Commun Integr Biol, 2011,4(2):240-242.
[7] Palmer GE, Kelly MN, Sturtevant JE. The Candida albicans vacuole is required for differentiation and efficient macrophage killing[J]. Eukaryot Cell, 2005,4(10):1677-1686.
[8] Kane PM. The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase[J]. Microbiol Mol Biol Rev, 2006,70(1):177-191.
[9] Kane PM. The long physiological reach of the yeast vacuolar H+-ATPase[J]. J Bioenerg Biomembr, 2007,39(5-6):415-421.
[10] Rane HS, Bernardo SM, Raines SM, et al. Candida albicans VMA3 is necessary for V-ATPase assembly and function and contributes to secretion and filamentation[J]. Eukaryotic Cell, 2013,12(10):1369-1382.
[11] Zhang Y, Rao R. The V-ATPase as a target for antifungal drugs[J]. Curr Protein Pept Sci, 2012,13(2):134.
[12] Davis D, Edwards JJ, Mitchell AP, et al. Candida albicans RIM101 pH response pathway is required for host-pathogen interactions[J]. Infect Immun, 2000,68(10):5953-5959.
[13] Hayek SR, Lee SA, Parra KJ. Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase) for anti-fungal therapy[J]. Front Pharmacol, 2014,5:4.
[14] Zhang YQ, Rao R. Beyond ergosterol:linking pH to antifungal mechanisms[J]. Virulence, 2010,1(6):551-554.
[15] Olsen I. Attenuation of Candida albicans virulence with focus on disruption of its vacuole functions[J]. J Oral Microbiol, 2014,6(1):23898.
[16] Johnson RM, Allen C, Melman SD, et al. Identification of inhibitors of vacuolar proton-translocating ATPase pumps in yeast by high-throughput screening flow cytometry[J]. Anal Biochem, 2010,398(2):203-211.
[17] Li Y, Sun L, Lu C, et al. Promising antifungal targets against Candida albicans based on ion homeostasis[J]. Front Cell Infect Microbiol, 2018,8:286.
[18] Gamarra S, Rocha EMF, Zhang YQ, et al. Mechanism of the synergistic effect of amiodarone and fluconazole in Candida albicans[J]. Antimicrob Agents Chemother, 2010,54(5):1753-1761.
[19] Zhang K, Jia C, Yu Q, et al. Contribution of VMA5 to vacuolar function, stress response, ion homeostasis and autophagy in Candida albicans[J]. Future Microbiol, 2017,12(13):1147-1166.
[20] Rane HS, Bernardo SM, Hayek SR, et al. The contribution of Candida albicans vacuolar ATPase subunit V1B, encoded byVMA2, to stress response, autophagy, and virulence is independent of environmental pH[J]. Eukaryotic Cell, 2014,13(9):1207-1221.
[21] Franke K. The vesicle transport protein Vac1p is required for virulence of Candida albicans[J]. Microbiology, 2006,152(10):3111-3121.
[22] Jia C, Yu Q, Xu N, et al. Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans[J]. Fungal Genet Biol, 2014,71:58-67.
[23] Theiss S, Kretschmar M, Nichterlein T, et al. Functional analysis of a vacuolar ABC transporter in wild-type Candida albicans reveals its involvement in virulence[J]. Mol Microbiol, 2002,43(3):571-584.
[24] Khandelwal NK, Kaemmer P, Forster TM, et al. Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence[J]. Biochem J, 2016,473(11):1537-1552.
[25] Brett CL, Kallay L, Hua Z, et al. Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae[J]. PLoS One, 2011,6(3):e17619.
[26] Cornet M, Bidard F, Schwarz P, et al. Deletions of endocytic components VPS28 and VPS32 affect growth at alkaline pH and virulence through both RIM101-dependent and RIM101-independent pathways in Candida albicans[J]. Infect Immun, 2005,73(12):7977-7987.
[27] Palmer GE, Cashmore A, Sturtevant J. Candida albicans VPS11 is required for vacuole biogenesis and germ tube formation[J]. Eukaryot Cell, 2003,2(3):411-421.
[28] Eck R, Nguyen M, Günther J, et al. The phosphatidylinositol 3-kinase Vps34p of the human pathogenic yeast Candida albicans is a multifunctional protein that interacts with the putative vacuolar H+-ATPase subunit Vma7p[J]. Int J Med Microbiol, 2005,295(1):57-66.
[29] Yun J, Lee DG. Role of potassium channels in chlorogenic acid-induced apoptotic volume decrease and cell cycle arrest in Candida albicans[J]. Biochim Biophys Acta Gen Subj, 2017,1861(3):585-592.
[30] Li L, Chen OS, Ward DM, et al. CCC1 Is a transporter that mediates vacuolar iron storage in yeast[J]. J Biol Chem, 2001,276(31):29515-29519.
[31] Jeeves RE, Mason RP, Woodacre A, et al. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans[J]. Yeast, 2011,28(9):629-644.
[32] Yu Q, Dong Y, Xu N, et al. A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans[J]. FEMS Yeast Res, 2014,14(7):1037.
[33] Tournu H, Carroll J, Latimer B, et al. Identification of small molecules that disrupt vacuolar function in the pathogen Candida albicans[J]. PLoS One, 2017,12(2):e171145.
[34] Johnston DA, Eberle KE, Sturtevant JE, et al. Role for endosomal and vacuolar GTPases in Candida albicans pathogenesis[J]. Infect Immun, 2009,77(6):2343-2355.
[35] Palmer GE. Endosomal and AP-3-dependent vacuolar trafficking routes make additive contributions to Candida albicans hyphal growth and pathogenesis[J]. Eukaryot Cell, 2010,9(11):1755-1765.
[36] Kato M, Wickner W. Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion[J]. EMBO J, 2001,20(15):4035-4040.
[37] Luna-Tapia A, Kerns ME, Eberle KE, et al. Trafficking through the late endosome significantly impacts Candida albicans tolerance of the azole antifungals[J]. Antimicrob Agents Chemother, 2015,59(4):2410-2420.
[38] Chang W, Li Y, Zhang M, et al. Solasodine-3-O-β-d-glucopyranoside kills Candida albicans by disrupting the intracellular vacuole[J]. Food Chem Toxicol, 2017,106:139-146.
[39] Ju S, Greenberg ML. Valproate disrupts regulation of inositol responsive genes and alters regulation of phospholipid biosynthesis[J]. Mol Microbiol, 2003,49(6):1595-1604.
[40] Deranieh RM, Shi Y, Tarsio M, et al. Perturbation of the vacuolar ATPase[J]. J Biol Chem, 2015,290(46):27460-27472.
[41] Eitzen G, Wang L, Thorngren N, et al. Remodeling of organelle-bound actin is required for yeast vacuole fusion[J].J Cell Biol, 2002,158(4):669-679.
[42] Michell RH, Heath VL, Lemmon MA, et al. Phosphatidylinositol 3,5-bisphosphate:metabolism and cellular functions[J]. Trends Biochem Sci, 2006,31(1):52-63. |