[1] Sardi JC, Scorzoni L, Bernardi T, et al. Candida species:current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options[J]. J Med Microbiol, 2013, 62(1):10-24.
[2] Wisplinghoff H, Ebbers J, Geurtz L, et al. Nosocomial bloodstream infections due to Candida, spp. in the USA:species distribution, clinical features and antifungal susceptibilities[J]. Int J Antimicrob Agents, 2014, 43(1):78-81.
[3] Klis FM, Groot PD, Hellingwerf K. Molecular organization of the cell wall of Candida albicans[J]. Med Mycol, 2001, 39(1):1-8.
[4] Fabre E, Sfihi-Loualia G, Pourcelot M, et al. Characterization of the recombinant Candida albicans β-1,2-mannosyltransferase that initiates the β-mannosylation of cell wall phosphopeptidomannan[J]. Biochem J, 2014, 457(2):347-360.
[5] Netea MG, Joosten LA, van der Meer JW, et al. Immune defence against Candida fungal infections[J]. Nat Rev Immunol, 2015, 15(10):630-642.
[6] Jouault T, El Abed-El Behi M, Martínez-Esparza M, et al. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling[J]. J Immunol, 2006, 177(7):4679-4687.
[7] Navarroarias MJ, Defosse TA, Dementhon K, et al. Disruption of protein mannosylation affects Candida guilliermondii cell wall, immune sensing, and virulence[J]. Front Microbiol, 2016, 7(7):1951.
[8] Dutton LC, Nobbs AH, Jepson K, et al. O-mannosylation in Candida albicans enables development of interkingdom biofilm communities[J]. MBio, 2014, 5(2):e00911.
[9] Gonzálezhernández RJ, Jin K, Hernándezchávez MJ, et al. Phosphomannosylation and the functional analysis of the extended Candida albicans MNN4-like gene family[J]. Front Microbiol, 2017, 8:2156.
[10] Bates S, Hall RA, Cheetham J, et al. Role of the Candida albicans MNN1 gene family in cell wall structure and virulence[J]. BMC Res Notes, 2013, 6(1):294.
[11] Jouault T, Ibataombetta S, Takeuchi O, et al. Candida albicans phospholipomannan is sensed through Toll-Like receptors[J]. J Infect Dis, 2003, 188(1):165-172.
[12] Mille C, Bobrowicz P, Trinel PA, et al. Identification of a new family of genes involved in β-1,2-mannosylation of glycans in Pichia pastoris and Candida albicans[J]. J Biol Chem, 2008, 283(15):9724-9736.
[13] Mille C, Janbon G, Delplace F, et al. Inactivation of CaMIT1 inhibits Candida albicans phospholipomannan β-mannosylation, reduces virulence, and alters cell wall protein β-mannosylation[J]. J Biol Chem, 2004, 279(46):47952-47960.
[14] Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213):1258096.
[15] Terns RM, Terns MP. CRISPR-based technologies:prokaryotic defense weapons repurposed[J]. Trends Genet, 2014, 30(3):111-118.
[16] Vyas VK, Barrasa MI, Fink GR. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families[J]. Sci Adv, 2015, 1(3):e1500248.
[17] Noble SM, Johnson AD. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans[J]. Eukaryot Cell, 2005, 4(2):298-309.
[18] Zhao Y, Du J, Xiong B, et al. ESCRT components regulate the expression of the ER/Golgi calcium pump gene PMR1 through the Rim101/Nrg1 pathway in budding yeast[J]. J Mol Cell Biol, 2013, 5(5):336-344.
[19] Jiang L, Alber J, Wang J, et al. The Candida albicans plasma membrane protein Rch1p, a member of the vertebrate SLC10 carrier family, is a novel regulator of cytosolic Ca2+ homoeostasis[J]. Biochem J, 2012, 444(3):497-502.
[20] Min K, Ichikawa Y, Woolford CA, et al. Candida albicans gene deletion with a transient CRISPR-Cas9 System[J]. mSphere, 2016, 1(3):e00130-16.
[21] Beeler TJ, Fu D, Rivera J, et al. SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2+ concentrations at 37 degrees C, is required for mannosylation of inositolphosphorylceramide[J]. Mol Gen Genet Mgg, 1997, 255(6):570-579.
[22] Roncero C, Durán A. Effect of calcofluor white and Congo red on fungal cell wall morphogenesis:in vivo activation of chitin polymerization[J]. J Bacteriol, 1985, 163(3):1180-1185.
[23] Ko A, Wheeler L J, Mathews CK, et al. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools[J]. J Biol Chem, 2004, 279(1):223-230.
[24] Shirahige K, Hori Y, Shiraishi K, et al. Regulation of DNA-replication origins during cell-cycle progression[J]. Nature, 1998, 395(6702):618-621. |