[1] Hu Y, Zhang J, Li X, et al. Penicillium marneffei infection:an emerging disease in mainland China[J]. Mycopathologia, 2013, 175(1-2):57-67.
[2] Vanittanakom N, Cooper R, Fisher C, et al. Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects[J]. Clin Microbiol Rev, 2006, 19(1):95-110.
[3] Kawila R, Chaiwarith R, Supparatpinyo K. Clinical and laboratory characteristics of penicilliosis marneffei among patients with and without HIV infection in Northern Thailand:a retrospective study[J]. Bmc Infectious Diseases, 2013, 13(1):464.
[4] Vanittanakom N, Sirisanthana T. Penicillium marneffei infection in patients infected with human immunodeficiency virus[J]. Curr Top Med Mycol, 1997, 8(1-2):35-42.
[5] 黄悦, 张子平, 程波,等. 白念珠菌高渗透性甘油信号通路研究进展[J]. 国际皮肤性病学杂志, 2010, 36(1):17-19.
[6] 张小华,刘向勇,于典科,等. 酿酒酵母促分裂原蛋白激酶Hog1p介导的渗透胁迫反应调控机制[J]. 中国生物化学与分子生物学报,2007, 23(1):27-32.
[7] 皇幼明, 朱红梅, 温海. MAPK信号通路在新生隐球菌致病机制中的作用[J]. 中国真菌学杂志, 2012, 7(5):304-308.
[8] Boyce KJ, Cao C, Andrianopoulos A. Two-component signaling regulates osmotic stress adaptation via SskA and the high-osmolarity glycerol MAPK pathway in the human pathogen Talaromyces marneffei[J]. Msphere, 2016, 1(1):e00086-15.
[9] Nimmanee P, Tam EWT, Woo PCY, et al. Role of the Talaromyces marneffei (Penicillium marneffei) sakA gene in nitrosative stress response, conidiation and red pigment production[J]. FEMS Microbiol Lett,2017, 364(8). doi:10.1093/femsle/fnw292.
[10] Nimmanee P, Woo PC, Kummasook A, et al. Characterization of SakA gene from pathogenic dimorphic fungus Penicillium marneffei[J]. Int J Med Microbiol, 2015, 305(1):65-74.
[11] Steinbach WJ, Cramer RA Jr, Perfect BZ, et al. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus[J]. Eukaryot Cell, 2006, 5(7):1091-1103.
[12] Suwunnakorn S, Cooper CR Jr, Kummasook A, et al. Role of the yakA gene in morphogenesis and stress response in Penicillium marneffei[J]. Microbiology, 2014, 160(Pt 9):1929-1939.
[13] Clinical and Laboratory Standards Institute.Reference method for broth dilution antifungal susceptibility testing of filamentous fungisecond edition:Approved standard M38-A2[S]. CLSI,Wayne,PA,2008.
[14] 李强国, 李昕, 曹存巍. 两种钙调磷酸酶抑制剂联合常用抗真菌药物对马尔尼菲青霉酵母相体外药敏的研究[J]. 广西医科大学学报, 2015, 32(2):169-172.
[15] Kawasaki L, Sánchez O, Shiozaki K, et al. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans[J]. Mol Microbiol, 2002, 45(4):1153-1163.
[16] Boisnard S, Ruprichrobert G, Florent M, et al. Role of Sho1p adaptor in the pseudohyphal development, drugs sensitivity, osmotolerance and oxidant stress adaptation in the opportunistic yeast Candida lusitaniae[J]. Yeast, 2008, 25(11):849-859.
[17] Alonsomonge R, Navarrogarcía F, Román E, et al. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans[J]. Eukaryotic Cell, 2003, 2(2):351-361.
[18] 曹存巍,万喆,刘伟,等. 米卡芬净联合两性霉素B/伊曲康唑作用于马尔尼菲青霉致病性酵母相的体外药敏实验研究[J]. 中国真菌学杂志,2009,4(4):229-231.
[19] Eschenauer G, Depestel DD, Carver PL. Comparison of echinocandin antifungals[J]. Ther Clin Risk Manag, 2007, 3(1):71-97.
[20] Walker LA, Gow NA, Munro CA. Fungal echinocandin resistance[J]. Fungal Genet Biol, 2010, 2(1):66.
[21] Perlin DS. Resistance to echinocandin-class antifungal drugs[J]. Drug Resistance Updates, 2007, 10(3):121-130.
[22] Beyda ND, Lewis RE, Garey KW. Echinocandin resistance in Candida species:mechanisms of reduced susceptibility and therapeutic approaches[J]. Ann Pharmacother, 2012, 46(7-8):1086-1096.
[23] Chandler JM, Treece ER, Trenary HR, et al. Protein profiling of the dimorphic, pathogenic fungus, Penicillium marneffei[J]. Proteome Sci, 2008, 6(1):17.
[24] Xi L, Xu X, Liu W, et al. Differentially expressed proteins of pathogenic Penicillium marneffei in yeast and mycelial phases[J]. J Med Microbiol, 2007, 56(3):298-304.
[25] Bruder Nascimento AC, Dos Reis TF, de Castro PA, et al. Mitogen activated protein kinases SakA(Hog1) and MpkC collaborate for Aspergillus fumigatus virulence[J]. Mol Microbiol, 2016, 100(5):841-859.
[26] Alonso-Monge R, Navarro-García F, Molero G, et al. Role of the Mitogen-Activated Protein Kinase Hog1p in Morphogenesis and Virulence of Candida albicans[J]. J Bacteriol, 1999, 181(10):3058.
[27] Park SM, Choi ES, Kim MJ, et al. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress[J]. Mol Microbiol, 2004, 51(5):1267-1277.
[28] Bahn YS. Master and commander in fungal pathogens:the two-component system and the HOG signaling pathway[J]. Eukaryotic Cell, 2008, 7(12):2017-2036.
[29] Igbaria A, Lev S, Rose M S, et al. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses[J]. Mol Plant Microbe Interact, 2008, 21(6):769.
[30] Lin CH, Chung KR. Specialized and shared functions of the histidine kinase and HOG1 MAP kinase-mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus[J]. Fungal Genet Biol, 2010, 47(10):818-827. |