[1] Cowen LE.The fungal Achilles' heel:targeting Hsp90 to cripple fungal pathogens[J].Curr Opin Microbiol,2013,16(4):377-384.
[2] Taipale M,jarosz DF,Lindquist S.HSP90 at the hub of protein homeostasis:emerging mechanistic insights[J].Nat Rev Mol Cell Biol,2010,11(7):515-528.
[3] Blacklock K,Verkhivker GM.Computational modeling of allosteric regulation in the hsp90 chaperones:a statistical ensemble analysis of protein structure networks and allosteric communications[J].PLoS Comput Biol,2014,10(6):e1003679.
[4] Leach MD,Klipp E,Cowen LE,et al.Fungal Hsp90:a biological transistor that tunes cellular outputs to thermal inputs[J].Nat Rev Microbiol,2012,10(10):693-704.
[5] Blacklock K,Verkhivker GM.Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones:protein structure network modeling[J].PLoS One,2014,9(1):e86547.
[6] Jahn M,Rehn A,Pelz B,et al.The charged linker of the molecular chaperone Hsp90 modulates domain contacts and biological function[J].Proc Natl Acad Sci U S A,2014,111(50):17881-17886.
[7] Zuehlke AD,Johnson JL.Chaperoning the chaperone:a role for the co-chaperone Cpr7 in modulating Hsp90 function in Saccharomyces cerevisiae[J].Genetics,2012,191(3):805-814.
[8] Synoradzki K,Bieganowski P.Middle domain of human Hsp90 isoforms differentially binds Aha1 in human cells and alters Hsp90 activity in yeast[J].Biochim Biophys Acta,2015,1853(2):445-452.
[9] Ciqlia E,Verqin J,Reimann S,et al.Resolving hot spots in the C-terminal dimerization domain that determine the stability of the molecular chaperone Hsp90[J].PLoS One,2014,9(4):e96031.
[10] Zhao H,Garq G,Zhao J,et al.Design,synthesis and biological evaluation of biphenylamide derivatives as Hsp90 C-terminal inhibitors[J].Eur J Med Chem,2015,89:442-466.
[11] Veri A,Cowen LE.Progress and prospects for targeting Hsp90 to treat fungal infections[J].Parasitology,2014,141(9):1127-1137.
[12] Diezmann S,Leach MD,Cowen LE.Functional divergence of Hsp90 genetic interactions in biofilm and planktonic cellular states[J].PLoS One,2015,10(9):e0137947.
[13] Khurana N,Bhattacharyya S.Hsp90,the concertmaster:tuning transcription[J].Front Oncol,2015,5:100.
[14] Lamoth F,Juvvadi PR,Gehrke C,et al.Transcriptional activation of heat shock protein 90 mediated via a proximal promoter region as trigger of caspofungin resistance in Aspergillus fumigatus[J].J Infect Dis,2014,209(3):473-481.
[15] Singh SD,Robbins N,Zaas AK,et al.Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin[J].PLoS Pathog,2009,5(7):e1000532.
[16] LaFayette SL,Colins C,Zaas AK,et al.PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1,calcineurin,and Hsp90[J].PLoS Pathog,2010,6(8):e1001069.
[17] Leach MD,Budge S,Walker L,et al.Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast[J].PLoS Pathog,2012,8(12):pe1003069.
[18] Zhao R,Davey M,Kaplanek P,et al.Navigating the chaperone network:an integrative map of physical and genetic interactions mediated by the hsp90 chaperone[J]Cell,2005.120(5):715-727.
[19] Shapiro RS,Zaas AK,Betancourt-Qurioz M,et al.The Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance[J].PLoS One,2012,7(9):e44734.
[20] Robbins N,Uppuluri P,Nett J,et al.Hsp90 governs dispersion and drug resistance of fungal biofilms[J].PLoS Pathog,2011.7(9):e1002257.
[21] Graf C,Lee CT,Eva Meier-Andrejszki L,et al.Differences in conformational dynamics within the Hsp90 chaperone family reveal mechanistic insights[J].Front Mol Biosci,2014,1:4.
[22] Smith JR,et al.Restricting direct interaction of CDC37 with HSP90 does not compromise chaperoning of client proteins[J].Oncogene,2013,34(1):15-26. |