Chinese Journal of Mycology 2011, Vol. 6 Issue (4): 193-198.
Received:
2011-03-04
Online:
2011-08-28
Published:
2011-08-28
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/
http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/Y2011/V6/I4/193
[1] 王红,叶嗣颖.深部真菌感染临床特点分析[J].中国微生态学杂志,2010,22(8):734-737. [2] Feng LJ,WanZ,Wang XH,et al.Relationship between antifungal resistance of fluconazole resistant Candida albicans and mutations in ERG11 gene[J].Chin Med J,2010,123 (5):544-548. [3] Brian G,Oliver JL,Song JH,et al.Cis-Acting elements within the Candida albicans ERG11 promoter mediate the azole response through transcription factor Upc2p[J].Eukayotic Cell,2007,6(12):2231-2239. [4] Nico D,Teresa TL,Katherine SB,et al.A gain-of-gunction mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate[J]. Eukayotic Cell,2008,7(7):1180-1190. [5] Clemens JH,Sabrina S,Katherine SB,et al.An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans[J].Antimicrobial Agents and Chemotherapy,2010,54(1):353-359. [6] Zheng H,Jiang YY,Wang Y,et al.TOP2 gene disruption reduces drug susceptibility by increasing intracellular ergosterol biosynthesis in Candida albicans[J].J Med Microbiol,2010,59(7):797-803. [7] Luiz RB,Charles E G,Yu XM,et al.Fluconazole transport into Candida albicanss ecretory vesicles by the membrane proteins Cdr1p,Cdr2p,and Mdr1p[J].Eukayotic Cell,2010,9(6):960-970. [8] Ann R H,Ya HL,Kyoko N,et al.ABC transporter Cdrl p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicansclinical isolates[J].Antimicrobial Agents and Chemotherapy,2008,52 (11):3851-3862. [9] Sarah T,Fariba R,Martine R.Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance[J].Antimicrobial Agents and Chemotherapy,2009,53(4):1344-1352. [10] Shen H,An MM,Wang D J,et al.Fcr1p inhibits development of fluconszole resistance in Candida albicans by abolishing CDR1 induction[J].Biol Pharm Bull,2007,30(1):68-73. [11] Maurizio S,Brunella P,Barbara F,et al.Mechanisms of azole resistance in clinical isolates of candida glabrata collected during a hospital survey of antifungal resistance[J].Antimicrobial Agents and Chemotherapy,2005,49 (2):668-679. [12] Bryce EM,HannaNO,Brian GO,et al.Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi[J].PLoS Pathogens,2010,6(9):1-11. [13] Mukherjee PK,Zhou G,Mohamed S,et al.Candida albicans biofilm:isolation and composition of extracellular matrix:abstracts of the seventh ASM conference on eandida and candidiasis,Austin,TX,2004[C]. [14] Mukherjee PK,Chandra J,Kuhn DM,et al.Mechanism of azole resistance in Candida albicans biofilms:phase specific role of efflux pumps and membrane sterols[J].Infect Immun,2003,71:4333-4340. [15] Jeniel Nett,Leslie Lincoln,Karen Marchillo,et al.Putative role of β-1,3 glucans in Candida albicans biofilm resistance[J].Antimicrobial Agents and Chemotherapy,2007,51 (2):510-520. [16] Jeniel EN,Kyler C,Karen M,et al.Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin,pyrimidine,and polyene[J].Antimicrobial Agents and Chemotherapy,2010,54(8):3505-3508. [17] Sheena DS,Nicole R,AimeeKZ,et al.Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin[J].Plos Pathogens,2009,5(7):1-14. [18] Cowen LE,Carpenter AE,Matangkasombut O.Genetic architecture of Hsp90-dependent drug resistance[J].Eukaryot Cell,2006,5:2184-2188. [19] Jennifer LR,Scott GF,Joseph H.Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence[J].Fungal Genetics and Biology,2010,47:107-116. [20] Jia XM,Ma ZP,Jia Y,et al.RTA2,a novel gene involved in azole resistance in Candida albicans[J].Biochemical and Biophysical Research Communications,2008,373:631-636. [21] Jia XM,Wang Y,Jia Y,et al.RTA2 is involved in calcineurinmediated azole resistance and sphingoid long-chain base release in Candida albicans[J].Cell Mol Life Sci,2009,66:122-134. [22] Martel CM,Parker JE,Bader O,et al.Identification and characterization of four azole-resistant erg3 mutants of Candida albicans[J].Antimicrob Agents Chemother,2010,54 (11):4527-4533. [23] Miyazaki T,Yoshitsugu M,Koichi I,et al.Fluconazole treatment is effective against a Candida albicans erg3/erg3 mutant in vivo despite in vitro resistance[J].Antimicrobial Agents and Chemotherapy,2006,50(2):580-586. [24] Peyron F,Favel A,Calaf R,et al.Sterol and fatty acid composition of Candida lusitaniae clinical isolates[J].Antimicrob Agents Chemother,2002,46 (2):531-533. [25] Laura YY,Christina MH,Joseph H.Disruption of ergosterol biosynthesis confers resistance to amphotericin B in candida lusitaniae[J].Antimicrobial Agents and Chemotherapy,2003,47(9):2717-2724. [26] Martel CM,Parker JE,Bader O,et al.A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alpha-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B[J].Antimicrob Agents Chemother,2010,54 (9):3578-3583. [27] Prasanna DK,Peter AS,Miller RL,et al.A Small subpopulation of blastospores in Candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and β-1,6-glucan pathway genes[J].Antimicrobial Agents and Chemotherapy,2006,50(11):3708-3716. [28] Park S,Kelly R,Kahn JN,et al.Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp.isolates[J].Antimicrob Agents Chemother,2005,49:3264-3273. [29] Desnos OM,Bretagne S,Raoux D,et al.Mutations in the fks1 gene in Candida albicans,C.tropicalis,and C.krusei correlate with elevated caspofungin MICs uncovered in AM3 medium using the method of the European committee on antibiotic susceptibility testing[J].Antimicrob Agents Chemother,2008,52(9):3092-3098. [30] Zimbeck AJ,Iqbal N,Ahlquist AM,et al.FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S.population-based surveillance[J].Antimicrob Agents Chemother,2010,54(12):5042-5047. [31] Warn PA,SharpA,MorrisseyG,et al.Activity of aminocandin (IP960 ; HMR3270) compared with amphotericin B,itraconazole,caspofungin and micafungin in neutropenic murine models of disseminated infection caused by itraconazole-susceptible and-resistant strains ofAspergillusfumigatus[J].Int J Antimicrob Agents,2010,35(2):146-151. [32] Sandeep S,Rohit KS,Rahul J.Current advances in antifungal targets and drug development[J].Current Medicinal Chemistry,2006,13:1321-1335. [33] Gonzólez IJ,Milewski S,Villagómez CJC,et al.Sporothrix schenckii:purification and partial biochemical characterization of glucosamine-6-phosphate synthase,a potential antifungal target[J].Med Mycol,2010,48(1):110-121. [34] Pasqualotto AC,Thiele KO,Goldani LZ.Novel triazole antifungal drugs:focus on isavuconazole,ravuconazole and albaconazole[J].Curr Opin Investig Drugs,2010,11 (2):165-174. [35] Kakeya H,Miyazaki Y,Senda H,et al.Efficacy of SPK-843,a novel polyene antifungal,in comparison with amphotericin B,liposomal amphotericin B,and micafungin against murine pulmonary aspergillesis[J].Antimicrob Agents Chemother,2008,52 (5):1868-1870. [36] Nafsika HG.Antifungals targeted to sphingolipid synthesis:focus on inositol phosphorylceramide synthase[J].Expert Opinion on Investigational Drugs,2000,9 (8):1787-1796. [37] Mandala SM,Thomton RA,Milligan J,et al.Rustmicin,a potent antifungal agent,inhibits sphingolipid synthesis at inositol phosphoceramide synthase[J].J Biol Chem,1998,273 (24):14942-14949. [38] Wen YZ,Matthew WJ,Nafsika H.Geergopapodakou.Inhibition of inesitol phesphorylceramide synthase by aureobnsidin a in candida and aspergillus species[J].Antimicrobial Agents and Chemotherapy,2000,44(3):651-653. [39] Aoyagi A,Yano T,Kozuma S,et al.Pleofungins,novel inositol phosphorylceramide synthase inhibitors,from Phona sp.SANK 13899 Ⅱ Structural elucidation[J].J Antibiot,2007,60 (2):143-152. [40] Sandbaken MG,Lupisella JA,DiDomenico B,et al.Protein synthesis in yeast.Structural and functional analysis of the gene encoding elongation factor 3[J].J Biol Chem,1990,265 (26):15838-15844. [41] Prasad KK,Toraskar MP,Kadam VJ.N-myristoyltransferase:a novel target[J].Mini Rev Med Chem,2008,8(2):142-149. [42] Sheng C,Zhu J,Zhang W,et al.3D-QSAR and molecular docking studies on benzothiazole derivatives as Candida albicans Nmyristoyltransfernse inhibitors[J].Eur J Med Chem,2007,42(4):477-486. [43] Melissa DJ,John RP.Use of antifungal combination therapy:agents order and timing[J].Curt Fungal Infect Rep,2010,4(2):87-95. [44] Sun L,Sun S,Cheng A,et al.In vitro activities of retigeric acid B alone and in combination with azole antifungal agents against Candida albicans[J].Antimicrob Agents Chemother,2009,53(4):1586-1591. [45] Guo XL,Leng P,Yang Y,et al.Plagiochin E,a botanic-derived phenolic compound,reverses fungal resistance to fluconazole relating to the efflux pump[J].J Appl Microbio1,2008,104 (3):831-838. [46] Jin J,Guo N,Zhang J,et al.The synergy of honokiol and fluconazole against clinical isolates of azole-resistant Candida albicans[J].Lett Appl Microbiol,2010,51 (3):357-361. [47] Quan H,Cao YY,Xu Z,et al.Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole[J].Antimicrob Agents Chemother,2006,50 (3):1096-1099. [48] Huang S,Cao YY,Dai BD,et al.In vitro synergism of fluconazole and baicalein against clinical isolates of Candida albicans resistant to fluconazole[J].Biol Pharm Bull,2008,31 (12):2234-2236. [49] An M,Shen H,Cno Y,et al.Allicin enhamces the oxidative damage effect of amphotericin B against Candida albicans[J].Int J Antimicrob Agents,2009,33(3):258-263. [50] Xu Y,Wang Y,YanL,et al.Proteomic analysis reveals a synergistic mechanism of fluconazole and berberine against fluconazole-resistant Candida albicans:endogenous ROS augmentation[J].J Proteome Res,2009,8(11):5296-5304. [51] Cao Y,Dai BD,Wang Y,et al.In vitro activity of baicalein against Candida albicans biofilms[J].Int J Antimierob Agents,2008,32(1):73-77. |
[1] | ZHU Hong-mei, WEN Hai. Clinical application of terbinafine in the treatment of subcutaneous and deep mycosis [J]. Chinese Journal of Mycology, 2020, 15(6): 374-377. |
[2] | Expert group of consensus on the clinical application of Terbinafine. Clinical Application of Terbinafine:Expert consensus [J]. Chinese Journal of Mycology, 2020, 15(5): 257-261. |
[3] | ZHU Hong-mei, WEN Hai. Clinical application of terbinafine in the treatment of superficial mycosis [J]. Chinese Journal of Mycology, 2020, 15(5): 297-303. |
[4] | QU Xin-yao, LI Shan-shan, QU Yue, Abdulhakim Salad Nageye, SONG Yang, CUI Yan. In vitro antifungal susceptibility of 10 Chinese herbal monomers against Sporothrix globosa [J]. Chinese Journal of Mycology, 2020, 15(3): 145-149. |
[5] | . [J]. Chinese Journal of Mycology, 2020, 15(3): 179-182. |
[6] | ZHANG Juan, LI Xiao-hui, Feng Xue-ling, ZHANG Jing-jing. Study on the antifungal effect of Aspergillus fumigatus, Trichophyton mentogrophtes and Cryptococcus neoformans to alkaloids from Sophora alopecuroides [J]. Chinese Journal of Mycology, 2020, 15(2): 72-77. |
[7] | LIU Guang-rong, ZHAI Chun-tao, JIN Min-rong, LI Cheng-liang. The inhibitory effects of natural antibacterial agent on 5 pathogenic microorganisms [J]. Chinese Journal of Mycology, 2020, 15(2): 88-92. |
[8] | TAN Jing-wen, XU Hong, SONG Jin-feng, GAO Zhi-qin, YANG Hong, YANG Lian-juan, WEN Hai. In vitro antifungal susceptibility of polyhexamethylene biguanide against common superficial fungal species [J]. Chinese Journal of Mycology, 2020, 15(2): 93-96. |
[9] | ZHU Hong-mei, WEN Hai, LI Bin. Advance on Traditional Chinese Herb in the topical antifungal therapy [J]. Chinese Journal of Mycology, 2019, 14(5): 316-320. |
[10] | YU Shu-ying, ZHANG Li, LI Ying, XU Ying-chun. Evaluation of the in vitro antifungal activity of the domestic caspofungin against clinical Aspergillus isolates [J]. Chinese Journal of Mycology, 2019, 14(3): 141-146. |
[11] | LIU Fei-fei, WANG Yan, CHEN Rong, SHEN Jian-zhen. Clinical efficacy and safety of intravenous injection voriconazole and fluconazole in preventing fungal infection in China: A meta analysis [J]. Chinese Journal of Mycology, 2019, 14(3): 159-163. |
[12] | LIU Yu, YAN Lan, JIANG Yuan-ying. Study on the mechanism of NT-89 against Candida albicans based on quantitative proteomics [J]. Chinese Journal of Mycology, 2019, 14(2): 70-77. |
[13] | . [J]. Chinese Journal of Mycology, 2019, 14(2): 124-128. |
[14] | DENG Jie-hua, LI JI-hong, QI Xiao-ming, WANG Gang-sheng. Comparison of sensitivity of cinnamaldehyde and caspofungin to Aspergillus oryzae and their effects on cell wall of Aspergillus fumigatus [J]. Chinese Journal of Mycology, 2018, 13(6): 345-349. |
[15] | . [J]. Chinese Journal of Mycology, 2018, 13(6): 354-356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||