Chinese Journal of Mycology 2023, Vol. 18 Issue (4): 359-363.
Previous Articles Next Articles
Received:
2021-11-25
Online:
2023-08-28
Published:
2023-09-02
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/
http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/Y2023/V18/I4/359
[1] GROLL A H, LUMB J. New developments in invasive fungal disease[J]. Future Microbiol, 2012, 7(2):179-184. [2] FELIX B, SARA G, RITA O, et al. Global and multi-national prevalence of fungal diseases—estimate precision[J]. J Fungi (Basel), 2017, 3(4):57. [3] PUEL A. Human inborn errors of immunity underlying superficial or invasive candidiasis[J]. Hum Genet, 2020, 139(4):1011-1022. [4] DEKKERS B, VERINGA A, MARRIOTT D, et al. Invasive candidiasis in the elderly: Considerations for drug therapy[J]. Drugs Aging, 2018, 35(9):781-789. [5] FRANCESCO B, ELENA O, SARA M, et al. Candidemia in the elderly: What does it change[J]. PLoS One, 2017, 12(5):e0176576. [6] WANG X J, SUI X, YAN L, et al. Vaccines in the treatment of invasive candidiasis[J]. Virulence, 2015, 6(4):309-315. [7] QIN Y, ZHANG L, XU Z, et al. Innate immune cell response upon Candida albicans infection[J]. Virulence, 2016, 7(5): 512-526. [8] HALL R A, GOW N. Mannosylation in Candida albicans: role in cell wall function and immune recognition[J]. Mol Microbiol, 2013, 90(6):1147-1161. [9] 于垚,何慧倩,吴梦雪,等.念珠菌与宿主相互作用的研究进展[J]. 菌物学报,2020,39(11):2088-2108. [10] KAWAI T, AKIRA S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity, 2011, 34(5):637-650. [11] VAUTIER S, MACCALLUM D M, BROWN G D. C-type lectin receptors and cytokines in fungal immunity[J]. Cytokine, 2012, 58(1):89-99. [12] VAND G C A A, NETEA M G, VERSCHUEREN I, et al. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae[J]. Infect Immun, 2005, 73(11):7458-7464. [13] NETEA M G, VAND G C A A, VONK A G, et al. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis[J]. J Infect Dis,2002,185(10):1483-1489. [14] GIL M L, GOZALBO D. TLR2, but not TLR4, triggers cytokine production by murine cells in response to Candida albicans yeasts and hyphae[J]. Microbes Infect, 2006, 8(8):2299-2304. [15] GOW N A, NETEA M G, MUNRO C A, et al. Immune recognition of Candida albicans beta-glucan by dectin-1[J].Infect Dis, 2007, 196(10):1565-1571. [16] CHEN S M, HUI S, ZHANG T, et al. Dectin-1 plays an important role in host defense against systemic Candida glabrata infection[J]. Virulence, 2017,8(8):1643-1656. [17] ZHU L L, ZHAO X Q, JIANG C, et al. C-Type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal Infection[J]. Immunity, 2013, 34(2):324-334. [18] LFRIM D C, QUINTIN J, COURJOL F, et al. The role of Dectin-2 for host defense against disseminated candidiasis[J]. J Interferon Cytokine Res, 2016, 36(4):267-276. [19] IFRIM D C, BAIN J M, REID D M, et al. Role of Dectin-2 for host defense against systemic infection with Candida glabrata[J]. Infect Immun, 2014, 82(3):1064. [20] THOMPSON A, DAVIES L C, LIAO C T, et al. The protective effect of inflammatory monocytes during systemic C. albicans infection is dependent on collaboration between C-type lectin-like receptors[J]. PLoS Pathog, 2019, 15(6):e1007850. [21] KERRIGAN A M, BROWN G D. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs[J]. Immunol Rev,2010, 234(1):335-352. [22] QUN Z S, ZUI Z, HUI S, et al. Mnn10 maintains pathogenicity in Candida albicans by extending α-1,6-mannose backbone to evade host Dectin-1 mediated antifungal immunity[J]. PLoS Pathog, 2016, 12(5):e1005617. [23] SHEN H, YU Y, ZHANG Y, et al. Dectin-1 facilitates IL-18 production for the generation of protective antibodies against Candida albicans[J]. Front Microbiol, 2020, 2020(7):1-16. [24] LIONAKIS M S, FISCHER B G, LIM J K, et al. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis[J]. PLoS Pathog, 2012, 8(8):e1002865. [25] GREGORI C, GLASER W, FROHNER I E, et al. Efg1 controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1[J]. Eukaryot Cell, 2011, 10(12):1694-1704. [26] JOHNSON C J, CABEZAS-OLCOZ J, KERNIEN J F, et al. The extracellular matrix of Candida albicans biofilms impairs formation of neutrophil extracellular traps[J]. PLoS Pathog, 2016,12(9):e1005884. [27] KERNIEN J F, JOHNSON C J, BAYLESS M L, et al. Neutrophils from patients with invasive candidiasis are inhibited by Candida albicans biofilms[J]. Front Immunol, 2020, 11:587956.DOI:10.3389/fimmu.2020.587956. [28] LINDEN J R,KUNKEL D, LAFORCE-NESBITT S S, et al. The role of galectin-3 in phagocytosis of Candida albicans and Candida parapsilosis by human neutrophils[J]. Cell Microbiol, 2013,15(7):1127-1142. [29] SHANKAR M, LO T L, TRAVEN A. Natural variation in clinical isolates of Candida albicans modulates neutrophil responses[J]. mSphere,2020,5(4):e00501-20. [30] DE ZUANI M, PAOLICELLI G, ZELANTE T, et al. Mast cells respond to Candida albicans infections and modulate macrophages phagocytosis of the fungus[J].Front Immunol, 2018, 9:2829.DOI: 10.3389/fimmu.2018.02829. [31] ZHANG X, GE Y, LI W, et al. Diversities of interaction of murine macrophages with three strains of Candida albicans represented by MyD88, CARD9 gene expressions and ROS, IL-10 and TNF-α secretion[J]. Int J Clin Exp Med, 2014, 7(12):5235-5243. [32] GIL-BONA A, PARRA-GIRALDO C M, Hernáez M L, et al. Candida albicans cell shaving uncovers new proteins involved in cell wall integrity, yeast to hypha transition, stress response and host-pathogen interaction[J].J Proteomics, 2015, 127(Pt B):340-351. [33] ZHENG X F, HONG Y X, FENG G J, et al. Lipopolysaccharide-induced M2 to M1 macrophage transformation for IL-12p70 production is blocked by Candida albicans mediated up-regulation of EBI3 expression[J]. PLoS One, 2013, 8(5):e63967. [34] LI S S, OGBOMO H, MANSOUR M K, et al. Identification of the fungal ligand triggering cytotoxic PRR-mediated NK cell killing of Cryptococcus and Candida[J]. Nat Commun. 2018,9(1):751. [35] VITENSHTEIN A, CHARPAK-AMIKAM Y, YAMIN R, et al. NK cell recognition of Candida glabrata through binding of NKp46 and NCR1 to fungal ligands Epa1, Epa6, and Epa7[J]. Cell Host Microbe, 2016, 20(4):527-534. [36] KIM E Y, NER-GAON H,VARON J, et al. Post-sepsis immunosuppression depends on NKT cell regulation of mTOR/IFNγ in NK cells[J]. J Clin Invest, 2020, 130(6):3238-3252. [37] BAI G, WANG H, HAN W, et al. T-Bet expression mediated by the mTOR pathway influences CD4+ T cell count in mice with lethal Candida sepsis[J]. Front Microbiol, 2020, 11:835.DOI: 10.3389/fmicb.2020.00835. [38] WANG H, HAN W, GUO R, et al. CD8+ T cell survival in lethal fungal sepsis was ameliorated by T-cell-specific mTOR deletion[J]. Int J Med Sci, 2021, 18(13):3004-3013. [39] QUIMBY K, LILLY E A, ZACHAREK M, et al. CD8 T-cells and E-cadherin in host responses against oropharyngeal candidiasis[J].Oral Dis, 2012, 18(2):153-161. [40] WHIBLEY N,MACCALLUM D M,VICKERS M A, et al. Expansion of Foxp3+ T-cell populations by Candida albicans enhances both Th17-cell responses and fungal dissemination after intravenous challenge[J]. Eur J Immunol, 2014, 44(4):1069-1083. [41] LIU F, FAN X, AUCLAIR S, et al. Sequential dysfunction and progressive depletion of Candida albicans-specific CD4 T cell response in HIV-1 Infection[J]. PLoS Pathog, 2016, 12(6):e1005663. [42] NATARAJAN B, SAMUEL C, ZHANG Y, et al. TLR-2 signaling promotes IL-17A production in CD4+CD25+Foxp3+ regulatory cells during oropharyngeal candidiasis[J]. Pathogens, 2015, 4(1):90-110. [43] VOGEL K, PIERAU M, ARRA A, et al.Developmental induction of human T-cell responses against Candida albicans and Aspergillus fumigatus[J]. Sci Rep. 2018,8(1):16904. [44] FIDEL P L. Caution regarding interpretations of intrauterine γ/δ T cells in protection against experimental vaginal candidiasis[J]. Mucosal Immunol, 2021, 14(3):1-2. [45] WAGNER R D, VAZQUEZ-TORRES A, JONES-CARSON J, et al. B cell knockout mice are resistant to mucosal and systemic candidiasis of endogenous origin but susceptible to experimental systemic candidiasis[J]. J Infect Dis,1996,174(3):589-597. [46] BRENA S, CABEZAS-OLCOZ J, MORAGUES M D, et al. Fungicidal monoclonal antibody C7 interferes with iron acquisition in Candida albicans[J]. Antimicrob Agents Chemother, 2011, 55(7):3156-3163. [47] RUDKIN F M, RAZIUNAITE I, WORKMAN H, et al.Single human B cell-derived monoclonal anti-Candida antibodies enhance phagocytosis and protect against disseminated candidiasis[J]. Nat Commun. 2018,9(1):5288. |
[1] | MENG Zhongjing, CAO Lulu, LU Jin, LIU Zhongqiu, ZHAN Guanjun. Treatment of postoperative Candida glabrata infection after total knee arthroplasty: a case report [J]. Chinese Journal of Mycology, 2023, 18(4): 331-334. |
[2] | . [J]. Chinese Journal of Mycology, 2023, 18(4): 381-384. |
[3] | LI Min, ZHAO Jianping, FENG Jiangtao. Analysis of clinical distribution and drug resistance of Candida in a hospital in Inner Mongolia from 2012 to 2021 [J]. Chinese Journal of Mycology, 2023, 18(2): 104-110. |
[4] | ZHONG Meizhen, GUO Shaoqing, LI Xiaozhong, ZHU Bo. Clinical analysis of 3 casesof very preterm/extremely preterm infant with bloodstream infection caused by multi-drug resistant Candida haemulonii [J]. Chinese Journal of Mycology, 2023, 18(2): 111-116,134. |
[5] | ZHOU Tingting, QIN Renli, XU Qiuhong, LUO Liuchun. Clinical characteristics and risk factors for mortality of 94 patients with Candida bloodstream infection [J]. Chinese Journal of Mycology, 2023, 18(2): 130-134. |
[6] | ZHANG Mengxiang, XU Yuewei, YANG Manqin. Clinical dosage regimens of fluconazole evaluated by Monte Carlo simulation in candidal urinary tract infection [J]. Chinese Journal of Mycology, 2023, 18(2): 135-139. |
[7] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 163-166,187. |
[8] | ZHOU Yihua, DENG Shuwen, ZHANG Lu, ZHANG Hong, ZHAO Rongfen, WANG Yufeng, SUN Yanxia, ZHU Hui. Distribution of pathogenic yeast species of vulvovaginitis and its epidemiological characteristics [J]. Chinese Journal of Mycology, 2023, 18(1): 12-18. |
[9] | ZHU Junfeng, ZHOU Ziyang, HU Wangchao, TANG Jianguo. Analysis of clinical characteristics and risk factors of nosocomial fungal urinary tract infection in ICU [J]. Chinese Journal of Mycology, 2022, 17(4): 273-277. |
[10] | . [J]. Chinese Journal of Mycology, 2022, 17(2): 173-176. |
[11] | . [J]. Chinese Journal of Mycology, 2020, 15(5): 318-320. |
[12] | LUO Xia, CHEN Zhen. Effect of multiple vaginal examinations on vaginal microecology during induced labor [J]. Chinese Journal of Mycology, 2020, 15(4): 202-205. |
[13] | HUANG Li, GONG Hao, ZHANG Chun-lian, FANG Cai-yun. Investigation of vaginal fungal infections in non-pregnant women [J]. Chinese Journal of Mycology, 2020, 15(4): 213-217. |
[14] | ZHANG Wen, LUO Ying, GUO Cheng-jie, XU Ying-chun, XIAO Meng, LEI Cheng-bin, ZHAO Yan, BI Lei. Clinical characteristics and pathogen of patients with candidemia [J]. Chinese Journal of Mycology, 2020, 15(3): 154-160. |
[15] | . [J]. Chinese Journal of Mycology, 2020, 15(3): 161-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||