Chinese Journal of Mycology 2023, Vol. 18 Issue (4): 350-353.
Previous Articles Next Articles
Received:
2022-06-01
Online:
2023-08-28
Published:
2023-09-02
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/
http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/Y2023/V18/I4/350
[1] VAN NIEL G,D'ANGELO G,RAPOSO G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol,2018,19(4):213-228. [2] 韦瑜,程磊,任彪.白色念珠菌胞外囊泡的组成及其功能研究进展[J].微生物学报,2022,62(2):434-445. [3] SHAH R,PATEL T,FREEDMAN J E. Circulating extracellular vesicles in human disease[J]. NEJM,2018,379(10): 2179-2180. [4] 侯欣,徐英春,赵玉沛.侵袭性光滑念珠菌感染流行病学以及药物敏感性[J].中国真菌学杂志,2016,11(4):242-247. [5] MONICA G,PEDRO P,MAFALDA C,et al. Divergent approaches to virulence in C. albicans and C. glabrata: Two sides of the same coin[J]. Int J Mol Sci,2019,20(9):2345. [6] THEIN Z M, SAMARANAYAKE Y H, SAMARANAYAKE L P. In vitro biofilm formation of Candida albicans and non-albicans Candida species under dynamic and anaerobic conditions[J]. Arch Oral Biol, 2007, 52(8):761-767. [7] PANARIELLO B H D,KLEIN M I,MIMA E G D O,et al. Fluconazole impacts the extracellular matrix of fluconazole-susceptible and -resistant Candida albicans and Candida glabrata biofilms[J]. J Oral Microbiol,2018,10(1):1476644. [8] 赵珺涛,刘锦燕,陈柯志,等.光滑念珠菌的毒力表达特征研究进展[J].中国真菌学杂志,2022,17(1):51-54. [9] SEIDER K,BRUNKE S,SCHILD L,et al. The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation[J]. J Immunol,2011,187(6):3072-3086. [10] AHMAD K M,ISHCHUK O P,HELLBORG L,et al. Small chromosomes among Danish Candida glabrata isolates originated through different mechanisms[J]. Antonie van Leeuwenhoek,2013,104(1):111-122. [11] ASTVAD K M T,JOHANSEN H K,RODER B L,et al. Update from a 12-year nationwide fungemia surveillance: Increasing intrinsic and acquired resistance causes concern[J]. J Clin Microbiol,2017,56(4):e01564-17. [12] 侯欣,徐英春,赵玉沛.棘白菌素在念珠菌中的耐药性[J].中国真菌学杂志,2018,13(1):40-45. [13] JUSTYNA K K,KAMILA K,ELZBIETA K,et al.Characteristics of extracellular vesicles released by the pathogenic yeast-like fungi Candida glabrata, Candida parapsilosis and Candida tropicalis[J]. Cells,2020,9(7):1722. [14] ZHAO M,ZHANG F,ZARNOWSHI R,et al. Turbinmicin inhibits Candida biofilm growth by disrupting fungal vesicle-mediated trafficking[J]. J Clin Invest,2020,131(5):e145123. [15] SILVA S,HENRIQUES M,MARTINS A,et al. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition[J]. Med Mycol,2009,47(7):681-689. [16] Al-FATTANI M A,DOUGLAS L J. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance[J]. J Med Microbiol,2006,55(Pt 8):999-1008. [17] DE TOLEDO M S,SZWARC P,GOLDENBERG S,et al. Extracellular vesicles in fungi: composition and functions[J]. Curr Top Microbiol Immunol,2019,422:45-59. DOI: 10.1007/82_2018_141. [18] ANA G B,AHINARA A G,CONCHA G,et al. The external face of Candida albicans : A proteomic view of the cell surface and the extracellular environment[J].J Proteomics,2018,180:70-79.DOI: 10.1016/j.jprot.2017.12.002. [19] BLEACKLEY M R,DAWSON C S,ANDERSON M A. Fungal extracellular vesicles with a focus on proteomic analysis[J]. Proteomics,2019,19(8):e1800232. [20] GOHAR A A,BADALI H,SHOKOHI T,et al. Expression patterns of ABC transporter genes in fluconazole-resistant Candida glabrata[J]. Mycopathologia,2017,182(3-4):273-284. [21] 张冠怡,姚冬婷,王健,等.光滑念珠菌耐药机制及中西药治疗光滑念珠菌感染研究进展[J].检验医学,2021,36(7):761-765. [22] KAUR R, MA B, CORMACK B P. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata[J]. Proc Natl Acad Sci U S A,2007,104(18):7628-7633. [23] RASHEED M,BATTU A,KAUR R. Aspartyl proteases in Candida glabrata are required for suppression of the host innate immune response[J].J Biol Chem,2018,293(17):6410-6433. [24] YANGLAN L,YUXUE O,LUPING S,et al. Alcohol dehydrogenase of Candida albicans triggers differentiation of THP-1 cells into macrophages[J]. J Adv Res,2019,18:137-145. DOI: 10.1016/j.jare.2019.02.005. [25] ZARNOWSHI R,SANCHEZ H,COVELLI A S,et al. Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis[J]. PLoS Biol,2018,16(10):e2006872. [26] GOLDMAN M, CLOUD G A, WADE K D, et al. A randomized study of the use of fluconazole in continuous versus episodic therapy in patients with advanced HIV infection and a history of oropharyngeal candidiasis: AIDS clinical trials group study 323/mycoses study group study 40[J]. Clin Infect Dis, 2005, 41(10): 1473-1480. [27] OLSON M L, JAYARAMAN A, KAO K C. Relative abundances of Candida albicans and Candida glabrata in in vitro coculture biofilms impact biofilm structure and formation[J]. Appl Environ Microbiol, 2018, 84(8):e02769-17. [28] ROSSONI R D, BARBOSA J O, VILELA S F, et al. Competitive interactions between C. albicans, C. glabrata and C. krusei during biofilm formation and development of experimental candidiasis[J]. PLoS One, 2015, 10(7):e0131700. [29] HUANG X W, XU M N, ZHENG H X, et al. Pre-exposure to Candida glabrata protects Galleria mellonella against subsequent lethal fungal infections[J]. Virulence,2020,11(1):1674-1684. [30] KAMLI M R, SABIR J S M, MALIK M A, et al. Characterization of the secretome of pathogenic Candida glabrata and their effectiveness against systemic candidiasis in BALB/c mice for vaccine development[J]. Pharmaceutics,2022,14(10):1989. |
[1] | CHENG Peng, A Xiangren, ZHOU Jianwu, MU Xiaoming, TIAN Lijuan, MA Xiaoya. Study on the effect of fluconazole with subinhibitory concentration on the virulence of Candida glabrata based on the Galleria mellonella infection model [J]. Chinese Journal of Mycology, 2023, 18(4): 291-295. |
[2] | WANG Shun, LI Hong, QU Yujie, LI Tingting, JIN Tingting, HU Fangfang, LUO Zhenhua. A study on the distribution and the biofilm formation related genes of Candida parapsilosis complex clinically isolated in Guizhou area [J]. Chinese Journal of Mycology, 2023, 18(4): 301-309. |
[3] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 178-182. |
[4] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 188-192. |
[5] | . [J]. Chinese Journal of Mycology, 2023, 18(1): 58-64. |
[6] | . [J]. Chinese Journal of Mycology, 2023, 18(1): 80-85. |
[7] | HUANG Yue, CAI Liangqi, ZHANG Ziping, CHENG Bo. Influence of CHK1 gene on ultrastrcture and fIuconazole susceptibility of Candida albicans [J]. Chinese Journal of Mycology, 2022, 17(4): 265-268,288. |
[8] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 315-318,329. |
[9] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 319-323. |
[10] | YANG Cheng, QIAO Yunlong, LI Rongyu, XIONG Yanjing, TANG Xingli. Antifungal activity of Bacillus velezensis Y6 peptide against Candida albicans [J]. Chinese Journal of Mycology, 2022, 17(3): 183-187,194. |
[11] | . [J]. Chinese Journal of Mycology, 2022, 17(3): 231-234. |
[12] | . [J]. Chinese Journal of Mycology, 2022, 17(3): 251-254. |
[13] | CHENG Wei, DENG Jing, LIU Ya, SHU Ling, CHEN Zhixing, DAI Zhongqiu, KANG Mei. Clinical and laboratory analysis of bloodstream infection caused by Candida tropicalis [J]. Chinese Journal of Mycology, 2022, 17(2): 99-102,114. |
[14] | HU Jing, LI Aihong, FENG Jinrong. Using Galleria mellonella model to investigate the role of SMT3 gene in regulating pathogenicity of Candida albicans [J]. Chinese Journal of Mycology, 2022, 17(2): 103-108. |
[15] | . [J]. Chinese Journal of Mycology, 2022, 17(2): 158-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||