Chinese Journal of Mycology 2023, Vol. 18 Issue (2): 183-187.
Previous Articles Next Articles
Received:
2022-11-04
Online:
2023-04-28
Published:
2023-05-26
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/
http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/Y2023/V18/I2/183
[1] SAKAGAMI T, KAWANO T, YAMASHITA K, et al. Antifungal susceptibility trend and analysis of resistance mechanism for Candida species isolated from bloodstream at a Japanese university hospital[J]. J Infect Chemother, 2019, 25(1):34-40. [2] MARAK M B, DHANASHREE B. Antifungal susceptibility and biofilm production of Candida spp. isolated from clinical samples[J]. Int J Microbiol, 2018:7495218.DOI:10.1155/2018/7495218. [3] MORAN C, GRUSSEMEYER C A, SPALDING J R, et al. Comparison of costs, length of stay, and mortality associated with Candida glabrata and Candida albicans bloodstream infections[J]. Am J Infect Control, 2010, 38(1):78-80. [4] NEWMAN D J, CRAGG G M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019[J]. J Nat Prod, 2020, 83(3):770-803. [5] HEARD S C, WU G, WINTER J M. Antifungal natural products[J]. Current Opinion in Biotechnology, 2021, 69:232-241. DOI:10.1016/j.copbio.2021.02.001. [6] SUN F-J, LI M, GU L, et al. Recent progress on anti-Candida natural products[J]. Chin J Nat Med, 2021, 19(8):561-579. [7] PU D, LI X, LIN J, et al. Triterpenoids from Ganoderma gibbosum:A class of sensitizers of FLC-resistant Candida albicans to fluconazole[J]. J Nat Prod, 2019, 82(8):2067-2077. [8] PEREIRA F G, MARQUETE R, DOMINGOS L T, et al. Antifungal activities of the essential oil and its fractions rich in sesquiterpenes from leaves of Casearia sylvestris Sw[J]. An Acad Bras Cienc, 2017, 89(4):2817-2824. [9] INTARAUDOM C, BOONYUEN N, SUVANNAKAD R, et al. Penicolinates A-E from endophytic Penicillium sp. BCC16054[J]. Tetrahedron Letters, 2013, 54(8):744-748. [10] CHEN Y, YANG W, ZOU G, et al. Bioactive polyketides from the mangrove endophytic fungi Phoma sp. SYSU-SK-7[J]. Fitoterapia, 2019, 139:104369. DOI:10.1016/j.fitote.2019.104369. [11] PEREIRA R, DOS SANTOS FONTENELLE R O, DE BRITO E H S, et al. Biofilm of Candida albicans:formation, regulation and resistance[J]. J Appl Microbiol, 2021, 131(1):11-22. [12] NETT J, ANDES D. Candida albicans biofilm development, modeling a host-pathogen interaction[J]. Curr Opin Microbiol, 2006, 9(4):340-345. [13] MATHE L, VAN DIJCK P. Recent insights into Candida albicans biofilm resistance mechanisms[J]. Curr Genet, 2013, 59(4):251-264. [14] CAO Y, DAI B, WANG Y, et al. In vitro activity of baicalein against Candida albicans biofilms[J]. Int J Antimicrob Agents, 2008, 32(1):73-77. [15] ARKOWITZ R A, LI Y, MA Y, et al. In vivo inhibitory effect on the biofilm formation of Candida albicans by liverwort derived riccardin D[J]. PLoS ONE, 2012, 7(4):e35543. [16] MA C, DU F, YAN L, et al. Potent activities of roemerine against Candida albicans and the underlying mechanisms[J]. Molecules, 2015, 20(10):17913-17928. [17] LEE J H, KIM Y G, KHADKE S K, et al. Inhibition of biofilm formation by Candida albicans and polymicrobial microorganisms by nepodin via hyphal-growth suppression[J]. ACS Infect Dis, 2019, 5(7):1177-1187. [18] NANI B D, ROSALEN P L, LAZARINI J G, et al. A study on the anti-NF-kappaB, anti-Candida, and antioxidant activities of two natural plant hormones:Gibberellin A4 and A7[J]. Pharmaceutics, 2022, 14(7):1347. [19] JACKSON D N, YANG L, WU S, et al. Garcinia xanthochymus benzophenones promote hyphal apoptosis and potentiate activity of fluconazole against Candida albicans biofilms[J]. Antimicrob Agents Chemother, 2015, 59(10):6032-6038. [20] LEE A. Ibrexafungerp:first approval[J]. Drugs, 2021, 81(12):1445-1450. [21] GARCIA R, ITTO-NAKAMA K, RODRIGUEZ-PENA J M, et al. Poacic acid, a beta-1,3-glucan-binding antifungal agent, inhibits cell-wall remodeling and activates transcriptional responses regulated by the cell-wall integrity and high-osmolarity glycerol pathways in yeast[J]. FASEB J, 2021, 35(9):e21778. [22] LARWOOD D J. Nikkomycin Z-ready to meet the promise?[J]. J Fungi (Basel), 2020, 6(4):261. [23] WU X Z, CHENG A X, SUN L M, et al. Effect of plagiochin E, an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans[J]. Acta Pharmacol Sin, 2008, 29(12):1478-1485. [24] JORDA T, PUIG S. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae[J]. Genes (Basel), 2020, 11(7):795. [25] SCORZONI L, DE PAULA E S A C, MARCOS C M, et al. Antifungal therapy:new advances in the understanding and treatment of mycosis[J]. Front Microbiol, 2017, 8:36. DOI:10.3389/fmicb.2017.00036. [26] ANSARI M A, FATIMA Z, HAMEED S. Anticandidal effect and mechanisms of monoterpenoid, perillyl alcohol against Candida albicans[J]. PLoS One,2016, 11(9):e0162465. [27] SHARMA Y, KHAN L A, MANZOOR N. Anti-Candida activity of geraniol involves disruption of cell membrane integrity and function[J]. J Mycol Med, 2016, 26(3):244-254. [28] TAVARES P M, THEVISSEN K, CAMMUE B P, et al. In vitro activity of the antifungal plant defensin RsAFP2 against Candida isolates and its in vivo efficacy in prophylactic murine models of candidiasis[J]. Antimicrob Agents Chemother, 2008, 52(12):4522-4525. [29] PEREZ-RODRIGUEZ A, ERASO E, QUINDOS G, et al. Antimicrobial peptides with anti-Candida activity[J]. Int J Mol Sci, 2022, 23(16):9264. [30] LI S, SHI H, CHANG W, et al. Eudesmane sesquiterpenes from Chinese liverwort are substrates of Cdrs and display antifungal activity by targeting Erg6 and Erg11 of Candida albicans[J]. Bioorg Med Chem, 2017, 25(20):5764-5771. [31] LEE H, CHOI H, KO H J, et al. Antifungal effect and mode of action of glochidioboside against Candida albicans membranes[J]. Biochem Biophys Res Commun, 2014, 444(1):30-35. [32] HAMANN A, BRUST D, OSIEWACZ H D. Apoptosis pathways in fungal growth, development and ageing[J]. Trends Microbiol, 2008, 16(6):276-283. [33] SUN L, LIAO K, HANG C, et al. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction[J]. PLoS One, 2017, 12(2):e0172228. [34] LEE J, LEE D G. Novel antifungal mechanism of resveratrol:apoptosis inducer in Candida albicans [J]. Curr Microbiol, 2015, 70(3):383-389. [35] LIU X, MA Z, ZHANG J, et al. Antifungal compounds against Candida infections from traditional Chinese medicine[J]. Biomed Res Int, 2017, 2017:4614183.DOI:10.1155/2017/4614183. [36] HAQUE F, VERMA N K, ALFATAH M, et al. Sophorolipid exhibits antifungal activity by ROS mediated endoplasmic reticulum stress and mitochondrial dysfunction pathways in Candida albicans[J]. RSC Adv, 2019, 9(71):41639-41648. [37] CHEN Y, ZENG H, TIAN J, et al. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans[J]. J Med Microbiol, 2013, 62(Pt 8):1175-1183. [38] CHOI H, LEE D G. Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction[J]. Biochimie, 2015, 115:108-115. DOI:10.1016/j.biochi.2015.05.009. [39] TIAN H, QU S, WANG Y, et al. Calcium and oxidative stress mediate perillaldehyde-induced apoptosis in Candida albicans[J]. Appl Microbiol Biotechnol, 2017, 101(8):3335-3345. [40] 姜晶晶,云云,张梦翔,等.白头翁汤正丁醇提取物对外阴阴道念珠菌病小鼠阴道黏膜中性粒细胞趋化的影响[J].中国中药杂志,2020,45(2):361-366. |
[1] | WANG Haofei, WANG Jinlong, HU Wenhan, SONG Qianwen, WU Changde, HE Jie, HU Linlin, XU Jingyuan, LI Qing, PAN Chun, XIE Jianfeng, HUANG Yingzi. Pharmacokinetic changes and influencing factors of amphotericin B in patients with severe invasive fungal infection [J]. Chinese Journal of Mycology, 2023, 18(2): 117-122. |
[2] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 172-177. |
[3] | CHAO Wen, DENG Zhongyu, GUO Shijin, GUO Yifan, YAN Lan, QIU Lijuan, LV Quanzhen. Study on the antifungal activity of small G protein inhibitor CASIN in vitro [J]. Chinese Journal of Mycology, 2022, 17(4): 289-293. |
[4] | . [J]. Chinese Journal of Mycology, 2022, 17(4): 339-348. |
[5] | HUANG Lei, ZHANG Yaming, YIN Cunlin, MIAO Yang, QI Wang, WANG Aming. Drug use evaluation of caspofungin based on weighted TOPSIS method [J]. Chinese Journal of Mycology, 2022, 17(3): 200-204,230. |
[6] | . [J]. Chinese Journal of Mycology, 2022, 17(3): 235-240. |
[7] | . [J]. Chinese Journal of Mycology, 2022, 17(3): 241-243,264. |
[8] | . [J]. Chinese Journal of Mycology, 2022, 17(3): 247-250. |
[9] | QIU Lijuan, CHAO Wen, SHI Anzhe, YAN Lan, LYU Quanzhen, JIANG Yuanying. Study on the synergistic antifungal activity of glyceryl monostearate and caspofungin in vitro [J]. Chinese Journal of Mycology, 2021, 16(3): 145-149,165. |
[10] | ZHANG Xinyu, PAN Kaisu, LUO Hong, ZHENG Dongyan, ZHENG Yanqin, CAO Cunwei, LIANG Gang. In vitro susceptibility of berberine combined with antifungal agents against Talaromyces marneffei [J]. Chinese Journal of Mycology, 2021, 16(3): 176-181. |
[11] | . [J]. Chinese Journal of Mycology, 2021, 16(3): 188-193,210. |
[12] | Expert group of consensus on the clinical application of Terbinafine. Clinical Application of Terbinafine:Expert consensus [J]. Chinese Journal of Mycology, 2020, 15(5): 257-261. |
[13] | ZHU Hong-mei, WEN Hai. Clinical application of terbinafine in the treatment of superficial mycosis [J]. Chinese Journal of Mycology, 2020, 15(5): 297-303. |
[14] | QU Xin-yao, LI Shan-shan, QU Yue, Abdulhakim Salad Nageye, SONG Yang, CUI Yan. In vitro antifungal susceptibility of 10 Chinese herbal monomers against Sporothrix globosa [J]. Chinese Journal of Mycology, 2020, 15(3): 145-149. |
[15] | . [J]. Chinese Journal of Mycology, 2020, 15(3): 179-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||