Chinese Journal of Mycology 2023, Vol. 18 Issue (2): 163-166,187.
Previous Articles Next Articles
Received:
2022-06-07
Online:
2023-04-28
Published:
2023-05-26
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/
http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/Y2023/V18/I2/163
[1] 张欠欠,罗传玉,陈嘉琪,等. 白念珠菌感染现状及抗真菌药物研究进展[J]. 中国真菌学杂志,2021, 16(5):356-360. [2] SHRESTHA S K, FOSSO M Y, GARNEAU-TSODIKOVA S. A combination approach to treating fungal infections[J]. Sci Rep,2015,5:17070. DOI:10.1038/srep17070. [3] LIU X, LI T, WANG D, et al. Synergistic antifungal effect of fluconazole combined with licofelone against resistant Candida albicans[J]. Front Microbiol,2017, 8:2101. DOI:10.3389/fmicb.2017.02101. [4] ROSATO A, CATALANO A, CAROCCI A, et al. In vitro interactions between anidulafungin and nonsteroidal anti-inflammatory drugs on biofilms of Candida spp[J]. Bioorg Med Chem,2016, 24(5):1002-1005. [5] FENG W, YANG J, MA Y, et al. Cotreatment with aspirin and azole drugs increases sensitivity of Candida albicans in vitro[J]. Infect Drug Resist,2021, 14(6):2027-2038. [6] LI Y, YANG J, LI X, et al. The effect of ginkgolide B combined with fluconazole against drug-resistant Candida albicans based on common resistance mechanisms[J]. Int J Antimicrob Agents, 2020, 56(2):106030. [7] LIU Y, REN H, WANG D, et al. The synergistic antifungal effects of gypenosides combined with fluconazole against resistant Candida albicans via inhibiting the drug efflux and biofilm formation[J]. Biomed Pharmacother,2020, 130:110580. DOI:10.1016/j.biopha.2020.110580. [8] YONG J, ZU R, HUANG X, et al. Synergistic effect of berberine hydrochloride and fluconazole against Candida albicans resistant isolates[J]. Front Microbiol,2020, 11:1498. DOI:10.3389/fmicb.2020.01498. [9] SHI J, LI S, GAO A, et al. Tetrandrine enhances the antifungal activity of fluconazole in a murine model of disseminated candidiasis[J]. Phytomedicine,2018, 46(6):21-31. [10] 邱丽娟,巢雯,石安喆,等. 硬脂酸单甘油酯协同卡泊芬净的体外抗念珠菌活性研究[J]. 中国真菌学杂志,2021, 16(3):145-149. [11] JIANG L, ZHENG L, SUN K A, et al. In vitro and in vivo evaluation of the antifungal activity of fluoxetine combined with antifungals against Candida albicans biofilms and oral candidiasis[J]. Biofouling,2020, 36(5):537-548. [12] LI Z, TU J, HAN G, et al. Novel carboline fungal histone deacetylase (HDAC) inhibitors for combinational treatment of azole-resistant candidiasis[J]. J Med Chem,2021, 64(2):1116-1126. [13] 冯文莉,杨静,马彦,等. 维拉帕米可增加游离/生物膜状态下白色念珠菌对抗真菌药物的敏感性[J]. 中国卫生检验杂志,2021, 31(19):2305-2311. [14] SEN K S, KIRAZ N, BARIS A, et al. Effects of calcineurin inhibitors, cyclosporine A and tacrolimus (FK506), on the activity of antifungal drugs against Candida spp[J]. J Med Microbiol,2021, 70(4). DOI:10.1099/jmm.0.001354. [15] 贾海瑞,刘珍,韩磊,等. HSP90抑制剂AUY922与氟康唑协同抗真菌活性研究[J]. 陕西科技大学学报,2021, 39(2):50-55. [16] ALLEMAILEM K S. Prophylactic and therapeutic role of vitmin D3 in combination with fluconazole against vaginal candidiasis in a murine model[J]. Curr Pharm Biotechnol,2021, 22(13):1812-1820. [17] XING X, LIAO Z, TAN F, et al.Effect of nicotinamide against Candida albicans[J]. Front Microbiol,2019, 10:595. DOI:10.3389/fmicb.2019.00595. [18] XU J, LIU R, SUN F, et al. Eucalyptal D enhances the antifungal effect of fluconazole on fluconazole-resistant Candida albicans by competitively inhibiting efflux pump[J]. Front Cell Infect Microbiol, 2019, 9:211. DOI:10.3389/fcimb.2019.00211. [19] LI Y, CHANG W, ZHANG M, et al. Synergistic and drug-resistant reversing effects of diorcinol D combined with fluconazole against Candida albicans[J]. FEMS Yeast Res,2015, 15(2). DOI:10.1093/femsyr/fov001. [20] BHATTACHARYA R, ROLTA R, DEV K, et al. Synergistic potential of essential oils with antibiotics to combat fungal pathogens:Present status and future perspectives[J]. Phytother Res,2021, 35(11):6089-6100. [21] PRIYA A, NIVETHA S, PANDIAN S K. Synergistic interaction of piperine and thymol on attenuation of the biofilm formation, hyphal morphogenesis and phenotypic switching in Candida albicans[J]. Front Cell Infect Microbiol,2021, 11:780545. DOI:10.3389/fcimb.2021.780545. [22] XU Y, LU H, ZHU S, et al. Multifactorial mechanisms of tolerance to ketoconazole in Candida albicans[J]. Microbiol Spectr,2021, 9(1):e32121-21. [23] DAHIYA S, SHARMA N, PUNIA A, et al. Antimycotic drugs and their mechanisms of resistance to Candida species[J]. Curr Drug Targets,2022, 23(2):116-125. [24] LU M, YAN H, YU C, et al. Proton pump inhibitors act synergistically with fluconazole against resistant Candida albicans[J]. Sci Rep,2020, 10(1):498. DOI:10.1038/s41598-019-57174-4. [25] GERWIEN F, SKRAHINA V, KASPER L, et al. Metals in fungal virulence[J]. FEMS Microbiol Rev,2018, 42(1). DOI:10.1093/femsre/fux050. [26] LI Y, SUN L, LU C, et al. Promising antifungal targets against Candida albicans based on ion homeostasis[J]. Front Cell Infect Microbiol,2018, 8:286. DOI:10.3389/fcimb.2018.00286. [27] LIU S, HOU Y, LIU W, et al. Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets[J]. Eukaryot Cell,2015, 14(4):324-334. [28] GAO Y, LI H, LIU S, et al. Synergistic effect of fluconazole and doxycycline against Candida albicans biofilms resulting from calcium fluctuation and downregulation of fluconazole-inducible efflux pump gene overexpression[J]. J Med Microbiol,2014, 63(Pt 7):956-961. [29] LI Y, JIAO P, LI Y, et al. The synergistic antifungal effect and potential mechanism of D-penicillamine combined with fluconazole against Candida albicans[J]. Front Microbiol,2019, 10:2853. DOI:10.3389/fmicb.2019.02853. [30] FENG W, YANG J, MA Y, et al. Aspirin and verapamil increase the sensitivity of Candida albicans to caspofungin under planktonic and biofilm conditions[J]. J Glob Antimicrob Resist,2021, 24(3):32-39. [31] LUO G, WANG T, ZHANG J, et al. Candida albicans requires iron to sustain hyphal growth[J]. Biochem Biophys Res Commun. 2021, 561:106-112.DOI:10.1016/j.bbrc.2021.05.039. [32] MARTINEZ-PASTOR M T, PUIG S. Adaptation to iron deficiency in human pathogenic fungi[J]. Biochim Biophys Acta Mol Cell Res,2020, 1867(10):118797. [33] FIORI A, VAN DIJCK P. Potent synergistic effect of doxycycline with fluconazole against Candida albicans is mediated by interference with iron homeostasis[J]. Antimicrob Agents Chemother,2012, 56(7):3785-3796. [34] NAKANO M, SUZUKI M, WAKABAYASHI H, et al. Synergistic anti-Candida activities of lactoferrin and the lactoperoxidase system[J]. Drug Discov Ther,2019, 13(1):28-33. [35] FERNANDES K E, WEEKS K, CARTER D A. Lactoferrin is broadly active against yeasts and highly synergistic with amphotericin B[J]. Antimicrob Agents Chemother. 2020, 64(5):e02284-19. [36] SHIRAZI F, KONTOYIANNIS D P. Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin non-susceptible isolates[J]. Virulence,2015, 6(4):385-394. [37] JIA C, ZHANG J, YU L, et al. Antifungal activity of coumarin against Candida albicans is related to apoptosis[J]. Front Cell Infect Microbiol,2019, 8:445. DOI:10.3389/fcimb.2018.00445. [38] CHEN H, LI H, DUAN C, et al. Reversal of azole resistance in Candida albicans by oridonin[J]. J Glob Antimicrob Resist,2021, 24:296-302.DOI:10.1016/j.jgar.2020.10.025. [39] LI X, WU X, GAO Y, et al. Synergistic effects and mechanisms of combined treatment with harmine hydrochloride and azoles for resistant Candida albicans[J]. Front Microbiol,2019, 10:2295. DOI:10.3389/fmicb.2019.02295. [40] PERRONE G G, TAN S X, DAWES I W. Reactive oxygen species and yeast apoptosis[J]. Biochim Biophys Acta,2008, 1783(7):1354-1368. [41] WANG Y, LU C, ZHAO X, et al. Antifungal activity and potential mechanism of Asiatic acid alone and in combination with fluconazole against Candida albicans[J]. Biomed Pharmacother,2021, 139:111568. DOI:10.1016/j.biopha.2021.111568. [42] ZHANG M, LU J, DUAN X, et al. Rimonabant potentiates the antifungal activity of amphotericin B by increasing cellular oxidative stress and cell membrane permeability[J]. FEMS Yeast Res, 2021, 21(3). DOI:10.1093/femsyr/foab016. [43] FENG W, YANG J, PAN Y, et al. The correlation of virulence, pathogenicity, and itraconazole resistance with SAP activity in Candida albicans strains[J]. Can J Microbiol,2016, 62(2):173-178. [44] GABRIELLI E, SABBATINI S, ROSELLETTI E, et al. In vivo induction of neutrophil chemotaxis by secretory aspartyl proteinases of Candida albicans[J]. Virulence,2016, 7(7):819-825. [45] FENG W, YANG J, MA Y, et al. The effects of secreted aspartylproteinase inhibitor ritonavir on azoles-resistant strains of Candida albicans as well as regulatory role of SAP2 and ERG11[J]. Immun Inflamm Dis,2021, 9(3):667-680. [46] BARMAN A, GOHAIN D, BORA U, et al. Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi[J]. Microbiol Res, 2018, 209:55-69. DOI:10.1016/j.micres.2017.12.012. [47] WANG T, PAN M, XIAO N, et al. In vitro and in vivo analysis of monotherapy and dual therapy with ethyl caffeate and fluconazole on virulence factors of Candida albicans and systemic candidiasis[J]. J Glob Antimicrob Resist,2021, 27:253-266. [48] 谷文睿. 唑类药物与氟西汀联合应用通过减弱毒力因子逆转白色念珠菌耐药性的作用与机制研究[D]. 山东大学, 2016. [49] 王应仙,李俊,秦定梅,等. Gomisin M1协同氟康唑对耐药白念珠菌毒力因子的作用研究[J]. 中草药, 2022, 53(3):743-750. [50] SHARIFZADEH A, KHOSRAVI A R, Shokri H, et al. Synergistic anticandidal activity of menthol in combination with itraconazole and nystatin against clinical Candida glabrata and Candida krusei isolates[J]. Microb Pathog,2017, 107:390-396.DOI:10.1016/j.micpath.2017.04.021. [51] 李小悦,黄顺伟,陈娟,等. 乌司他丁联合抗真菌药物治疗侵袭性念珠菌感染的实验研究[J]. 中华普通外科学文献(电子版),2013, 7(4):269-272. [52] 林通,张玉奇,李小悦. 补中益气汤联合抗真菌药物治疗侵袭性念珠菌病的实验研究[J]. 中国当代医药,2018, 25(24):47-49. |
[1] | LI Min, ZHAO Jianping, FENG Jiangtao. Analysis of clinical distribution and drug resistance of Candida in a hospital in Inner Mongolia from 2012 to 2021 [J]. Chinese Journal of Mycology, 2023, 18(2): 104-110. |
[2] | ZHONG Meizhen, GUO Shaoqing, LI Xiaozhong, ZHU Bo. Clinical analysis of 3 casesof very preterm/extremely preterm infant with bloodstream infection caused by multi-drug resistant Candida haemulonii [J]. Chinese Journal of Mycology, 2023, 18(2): 111-116,134. |
[3] | ZHOU Tingting, QIN Renli, XU Qiuhong, LUO Liuchun. Clinical characteristics and risk factors for mortality of 94 patients with Candida bloodstream infection [J]. Chinese Journal of Mycology, 2023, 18(2): 130-134. |
[4] | ZHANG Mengxiang, XU Yuewei, YANG Manqin. Clinical dosage regimens of fluconazole evaluated by Monte Carlo simulation in candidal urinary tract infection [J]. Chinese Journal of Mycology, 2023, 18(2): 135-139. |
[5] | ZHOU Yihua, DENG Shuwen, ZHANG Lu, ZHANG Hong, ZHAO Rongfen, WANG Yufeng, SUN Yanxia, ZHU Hui. Distribution of pathogenic yeast species of vulvovaginitis and its epidemiological characteristics [J]. Chinese Journal of Mycology, 2023, 18(1): 12-18. |
[6] | ZHU Junfeng, ZHOU Ziyang, HU Wangchao, TANG Jianguo. Analysis of clinical characteristics and risk factors of nosocomial fungal urinary tract infection in ICU [J]. Chinese Journal of Mycology, 2022, 17(4): 273-277. |
[7] | . [J]. Chinese Journal of Mycology, 2022, 17(2): 173-176. |
[8] | . [J]. Chinese Journal of Mycology, 2020, 15(5): 318-320. |
[9] | LUO Xia, CHEN Zhen. Effect of multiple vaginal examinations on vaginal microecology during induced labor [J]. Chinese Journal of Mycology, 2020, 15(4): 202-205. |
[10] | HUANG Li, GONG Hao, ZHANG Chun-lian, FANG Cai-yun. Investigation of vaginal fungal infections in non-pregnant women [J]. Chinese Journal of Mycology, 2020, 15(4): 213-217. |
[11] | ZHANG Wen, LUO Ying, GUO Cheng-jie, XU Ying-chun, XIAO Meng, LEI Cheng-bin, ZHAO Yan, BI Lei. Clinical characteristics and pathogen of patients with candidemia [J]. Chinese Journal of Mycology, 2020, 15(3): 154-160. |
[12] | . [J]. Chinese Journal of Mycology, 2020, 15(3): 161-163. |
[13] | . [J]. Chinese Journal of Mycology, 2020, 15(3): 164-166. |
[14] | ZHANG Jing-yun, PENG Jing-wen, WANG Qiong, GAO Ying, CHEN Wan-xin, SHEN Yong-nian, LI Dong-mei, SHE Xiao-dong, LIU Wei-da. The role of EGFR in the pathogenesis of vaginal candidiasis [J]. Chinese Journal of Mycology, 2020, 15(2): 65-71. |
[15] | WANG Jun-ting, LIU Yong. Analysis of distribution and drug resistance of clinical Candida strains in 497 cases [J]. Chinese Journal of Mycology, 2020, 15(2): 78-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||