Chinese Journal of Mycology 2023, Vol. 18 Issue (1): 90-96.
Received:
2022-03-18
Published:
2023-03-17
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/
http://cjmycology.smmu.edu.cn:81/Jweb_zgzj/EN/Y2023/V18/I1/90
[1] FIRACATIVE C. Invasive fungal disease in humans:are we aware of the real impact[J]? Mem Inst Oswaldo Cruz, 2020, 115:e200430. DOI:10. 1590/0074-02760200430. [2] 朱丽芳. 深部真菌感染研究进展[J]. 现代医药卫生, 2017, 33(16):2484-2487. [3] CHOW E W L, PANG L M, WANG Y. From Jekyll to Hyde:the yeast-hyphal transition of Candida albicans[J]. Pathogens, 2021, 10(7):859. [4] SCHMIEDEL Y, ZIMMERLI S. Common invasive fungal diseases:an overview of invasive candidiasis, aspergillosis, cryptococcosis, and Pneumocystis pneumonia[J]. Swiss Med Wkly, 2016, 146:w14281. DOI:10. 4414/smw. 2016. 14281. [5] 段思蒙, 肖盟, 黄晶晶, 等. 2012年度侵袭性真菌耐药监测网(CHIF-NET)侵袭性酵母菌感染的分布特征[J]. 中国真菌学杂志, 2021, 16(4):234-242. [6] FRIAS-DE-LEON M G, HERNANDEZ-CASTRO R, CONDE-CUEVAS E, et al. Candida glabrata antifungal resistance and virulence factors, a perfect pathogenic combination[J]. Pharmaceutics, 2021, 13(10):1529. [7] VON LILIENFELD-TOAL M, WAGENER J, EINSELE H, et al. Invasive fungal infection[J]. Dtsch Arztebl Int, 2019, 116(16):271-278. [8] IYER K R, REVIE N M, FU C, et al. Treatment strategies for cryptococcal infection:challenges, advances and future outlook[J]. Nat Rev Microbiol, 2021, 19(7):454-466. [9] STONE N R, RHODES J, FISHER M C, et al. Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis[J]. J Clin Invest, 2019, 129(3):999-1014. [10] GARRE V. Recent advances and future directions in the understanding of mucormycosis[J]. Front Cell Infect Microbiol, 2022, 12:850581. DOI:10. 3389/fcimb. 2022. 850581. [11] CHANG Z, BILLMYRE R B, LEE S C, et al. Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides[J]. PLoS Genet, 2019, 15(2):e1007957. [12] OSMAN MOHAMED A, SULIMAN MOHAMED M, ABDELRAHMAN HUSSAIN M, et al. Detection of antifungal drug-resistant and ERG11 gene mutations among clinical isolates of Candida species isolated from Khartoum, Sudan[J]. F1000Res, 2020, 9:1050. DOI:10. 12688/f1000research. 24854. 2. [13] VU B G, MOYE-ROWLEY W S. Azole-resistant alleles of ERG11 in Candida glabrata trigger activation of the Pdr1 and Upc2A transcription factors[J]. Antimicrob Agents Chemother, 2022, 66(3):e0209821. [14] ZARE-KHAFRI M, ALIZADEH F, NOURIPOUR-SISAKHT S, et al. Inhibitory effect of magnetic iron-oxide nanoparticles on the pattern of expression of lanosterol 14 α-demethylase (ERG11) in fluconazole-resistant colonising isolate of Candida albicans[J]. IET nanobiotechnology, 2020, 14(5):375-381. [15] 纪凌云, 周爱萍, 马俊, 等. 白念珠菌唑类药物耐药机制研究进展[J]. 中国感染与化疗杂志, 2019, 19(2):218-223. [16] VILLASMIL M L, BARBOSA A D, CUNNINGHAM J L, et al. An Erg11 lanosterol 14 α-demethylase-Arv1 complex is required for Candida albicans virulence[J]. PLoS One, 2020, 15(7):e0235746. [17] PRASADR, NAIR R, BANERJEE A. Emerging mechanisms of drug resistance in Candida albicans [J]. Prog Mol Subcell Biol, 2019, 58:135-153. DOI:10. 1007/978-3-030-13035-0_6. [18] BHATTACHARYA S, SAE-TIA S, FRIES B C. Candidiasis and mechanisms of antifungal resistance[J]. Antibiotics (Basel), 2020, 9(6):312. [19] SATISH S, PERLIN D S. Echinocandin resistance in Aspergillus fumigatus has broad implications for membrane lipid perturbations that influence drug-target interactions[J]. Microbiol Insights, 2019, 12:1178636119897034. DOI:10. 1177/1178636119897034. [20] CASTANHEIRA M, DESHPANDE L M, DAVIS A P, et al. Monitoring antifungal resistance in a global collection of invasive yeasts and molds:application of CLSI epidemiological cutoff values and whole-genome sequencing analysis for detection of azole resistance in Candida albicans[J]. Antimicrob Agents Chemother, 2017, 61(10):e00906-17. [21] ENOCH D A, YANG H, ALIYU S H, et al. The changing epidemiology of invasive fungal infections[J]. Methods Mol Biol, 2017, 1508:17-65. DOI:10. 1007/978-1-4939-6515-1_2. [22] FARMAKIOTIS D, KONTOYIANNIS D P. Epidemiology of antifungal resistance in human pathogenic yeasts:current viewpoint and practical recommendations for management[J]. Int J Antimicrob Agents, 2017, 50(3):318-324. [23] NISHIMOTO A T, SHARMA C, ROGERS P D. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans[J]. J Antimicrob Chemother, 2020, 75(2):257-270. [24] LIU J Y, WEI B, WANG Y, et al. The H741D mutation in Tac1p contributes to the upregulation of CDR1 and CDR2 expression in Candida albicans[J]. Braz J Microbiol, 2020, 51(4):1553-1561. [25] FENG W, YANG J, YANG L, et al. Research of Mrr1, Cap1 and MDR1 in Candida albicans resistant to azole medications[J]. Exp Ther Med, 2018, 15(2):1217-1224. [26] SHI H, ZHANG Y, ZHANG M, et al. Molecular mechanisms of azole resistance in four clinical Candida albicans isolates[J]. Microb Drug Resist, 2021, 27(12):1641-1651. [27] 寿晓岚, 张继丰, 葛玉梅. 女性生殖道白色念珠菌唑类药物耐药转录因子编码基因UPC2的多态性研究[J]. 中国卫生检验杂志, 2021, 31(12):1434-1436. [28] LUNA-TAPIA A, WILLEMS H M E, PARKER J E, et al. Loss of Upc2p-inducible ERG3 transcription is sufficient to confer niche-specific azole resistance without compromising Candida albicans pathogenicity[J]. mBio, 2018, 9(3):e00225-18. [29] DENG K, JIANG W, JIANG Y, et al. ALS3 expression as an indicator for Candida albicans biofilm formation and drug resistance[J]. Front Microbiol, 2021, 12:655242. DOI:10. 3389/fmicb. 2021. 655242. [30] 王航, 阎澜. 白念珠菌耐药机制研究进展[J]. 中国真菌学杂志, 2018, 13(5):314-317. [31] YUAN R, TU J, SHENG C, et al. Effects of Hsp90 inhibitor ganetespib on inhibition of azole-resistant Candida albicans[J]. Front Microbiol, 2021, 12:680382. DOI:10. 3389/fmicb. 2021. 680382. [32] LOHSE M B, GULATI M, JOHNSON A D, et al. Development and regulation of single- and multi-species Candida albicans biofilms[J]. Nat Rev Microbiol, 2018, 16(1):19-31. [33] NYWENING A V, RYBAK J M, ROGERS P D, et al. Mechanisms of triazole resistance in Aspergillus fumigatus[J]. Environ Microbiol, 2020, 22(12):4934-4952. [34] CHEN P, LIU M, ZENG Q, et al. Uncovering new mutations conferring azole resistance in the Aspergillus fumigatus CYP51A gene[J]. Front Microbiol, 2019, 10:3127. DOI:10. 3389/fmicb. 2019. 03127. [35] MACEDO D, BRITO DEVOTO T, POLA S, et al. A novel combination of CYP51A mutations confers pan-azole resistance in Aspergillus fumigatus[J]. Antimicrob Agents Chemother, 2020, 64(8):e02501-19. DOI:10. 1128/AAC. 02501-19. [36] SHISHODIA S K, TIWARI S, SHANKAR J. Resistance mechanism and proteins in Aspergillus species against antifungal agents[J]. Mycology, 2019, 10(3):151-165. [37] MORELLI K A, KERKAERT J D, CRAMER R A. Aspergillus fumigatus biofilms:toward understanding how growth as a multicellular network increases antifungal resistance and disease progression[J]. PLoS Pathog, 2021, 17(8):e1009794. [38] BURKS C, DARBY A, GóMEZ LONDOñO L, et al. Azole-resistant Aspergillus fumigatus in the environment:identifying key reservoirs and hotspots of antifungal resistance[J]. PLoS Pathog, 2021, 17(7):e1009711. [39] RUDRAMURTHY S M, PAUL R A, CHAKRABARTI A, et al. Invasive aspergillosis by Aspergillus flavus:epidemiology, diagnosis, antifungal resistance, and management[J]. J Fungi(Basel), 2019, 5(3):55. [40] ZAFAR H, ALTAMIRANO S, BALLOUE R, et al. A titanic drug resistance threat in Cryptococcus neoformans[J]. Curr Opin Microbiol, 2019, 52:158-164. DOI:10. 1016/j. mib. 2019. 11. 001. [41] SAGATOVA A A, KENIYA M V, WILSON R K, et al. Triazole resistance mediated by mutations of a conserved active site tyrosine in fungal lanosterol 14 α-demethylase[J]. Sci Rep, 2016, 6:26213. DOI:10. 1038/srep26213. [42] NAGY G, KISS S, VARGHESE R, et al. Characterization of three pleiotropic drug resistance transporter genes and their participation in the azole resistance of Mucor circinelloides[J]. Front Cell Infect Microbiol, 2021, 11:660347. DOI:10. 3389/fcimb. 2021. 660347. [43] 武芳, 张叶毛, 赵建平, 等. 2012-2019年某医院临床分离念珠菌的耐药性监测[J]. 中国真菌学杂志, 2021, 16(5):341-345. [44] BASSETTI M, VENA A, BOUZA E, et al. Antifungal susceptibility testing in Candida, Aspergillus and Cryptococcus infections:are the MICs useful for clinicians[J]? Clin Microbiol Infect, 2020, 26(8):1024-1033. [45] FLORIO W, TAVANTI A, GHELARDI E, et al. MALDI-TOF MS applications to the detection of antifungal resistance:state of the art and future perspectives[J]. Front Microbiol, 2018, 9:2577. DOI:10. 3389/fmicb. 2018. 02577. [46] PAUL S, SINGH P, A S S, et al. Rapid detection of fluconazole resistance in Candida tropicalis by MALDI-TOF MS[J]. Med Mycol, 2018, 56(2):234-241. [47] DELAVY M, DOS SANTOS A R, HEIMAN C M, et al. Investigating antifungal susceptibility in Candida species with MALDI-TOF MS-based assays[J]. Front Cell Infect Microbiol, 2019, 9:19. DOI:10. 3389/fcimb. 2019. 00019. [48] VATANSHENASSAN M, BOEKHOUT T, LASS-FL RL C, et al. Proof of concept for MBT ASTRA, a rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based method to detect caspofungin resistance in Candida albicans and Candida glabrata[J]. J Clin Microbiol, 2018, 56(9):e00420-18. [49] GABALDóN T. Recent trends in molecular diagnostics ofyeast infections:from PCR to NGS[J]. FEMS Microbiol Rev, 2019, 43(5):517-547. [50] KIDD S E, CHEN S C, MEYER W, et al. A new age in molecular diagnostics for invasive fungal disease:are we ready[J]?Front Microbiol, 2019, 10:2903. DOI:10. 3389/fmicb. 2019. 02903. [51] MAENCHANTRARATH C, KHUMDEE P, SAMOSORNSUK S, et al. Investigation of fluconazole susceptibility to Candida albicans by MALDI-TOF MS and real-time PCR for CDR1, CDR2, MDR1 and ERG11[J]. BMC Microbiol, 2022, 22(1):153. [52] BUIL J B, ZOLL J, VERWEIJ P E, et al. Molecular detection of azole-resistant Aspergillus fumigatus in clinical samples[J]. Front Microbiol, 2018, 9:515. DOI:10. 3389/fmicb. 2018. 00515. [53] SPETTEL K, BAROUSCH W, MAKRISTATHIS A, et al. Analysis of antifungal resistance genes in Candida albicans and Candida glabrata using next generation sequencing[J]. PLoS One, 2019, 14(1):e0210397. [54] BISWAS C, CHEN S C, HALLIDAY C, et al. Whole genome sequencing of Candida glabrata for detection of markers of antifungal drug resistance[J]. J Vis Exp, 2017, (130):56714. DOI:10. 3791/56714. |
[1] | LI Tiantian, LI Bingkun, HUANG Xiaolu, LIAO Liuwei, JIANG Zhiwen, HE Xiaojuan, MO Nanfang, LI Xiuying, JIANG Li, PAN Kaisu, CAO Cunwei. Analysis of susceptibility factors forinfection with Talaromyces marneffei in non-HIV individuals [J]. Chinese Journal of Mycology, 2023, 18(2): 97-103,110. |
[2] | LI Min, ZHAO Jianping, FENG Jiangtao. Analysis of clinical distribution and drug resistance of Candida in a hospital in Inner Mongolia from 2012 to 2021 [J]. Chinese Journal of Mycology, 2023, 18(2): 104-110. |
[3] | ZHONG Meizhen, GUO Shaoqing, LI Xiaozhong, ZHU Bo. Clinical analysis of 3 casesof very preterm/extremely preterm infant with bloodstream infection caused by multi-drug resistant Candida haemulonii [J]. Chinese Journal of Mycology, 2023, 18(2): 111-116,134. |
[4] | WANG Haofei, WANG Jinlong, HU Wenhan, SONG Qianwen, WU Changde, HE Jie, HU Linlin, XU Jingyuan, LI Qing, PAN Chun, XIE Jianfeng, HUANG Yingzi. Pharmacokinetic changes and influencing factors of amphotericin B in patients with severe invasive fungal infection [J]. Chinese Journal of Mycology, 2023, 18(2): 117-122. |
[5] | ZHU Xinlin, LI Chen, HU Dongying, CHEN Xianzhen, JIANG Weiwei, LIU Yinuo, CHEN Tianyang, CHEN Tiancheng, LIAO Wanqing, LIU Xiaogang, PAN Weihua. Retrospective analysis of Kodamaea ohmeri infection in Asia from 2002 to 2022 [J]. Chinese Journal of Mycology, 2023, 18(2): 123-129. |
[6] | ZHOU Tingting, QIN Renli, XU Qiuhong, LUO Liuchun. Clinical characteristics and risk factors for mortality of 94 patients with Candida bloodstream infection [J]. Chinese Journal of Mycology, 2023, 18(2): 130-134. |
[7] | ZHANG Mengxiang, XU Yuewei, YANG Manqin. Clinical dosage regimens of fluconazole evaluated by Monte Carlo simulation in candidal urinary tract infection [J]. Chinese Journal of Mycology, 2023, 18(2): 135-139. |
[8] | CAO Ya, TAN Qingche, ZHANG Jiatang, ZHAO Hong, SU Min, MA Yubao, HE Mianwang, YANG Fei, YU Shengyuan. Pulmonary infection and encephalopyosis induced by Scedosporium apiospermum:a case report and literatures review [J]. Chinese Journal of Mycology, 2023, 18(2): 146-150. |
[9] | YE Jinghuan, CHEN Zhuni, LIU Yu, LI Yaqing, XIE Wei. Pulmonary infection caused by Schizophyllum commune complicated with atelectasis: a case report and review of the literature [J]. Chinese Journal of Mycology, 2023, 18(2): 151-155. |
[10] | HU Qin, WU Qiong, OUYANG Yi. A case of eyelid abscess caused by Talaromyces marneffei in non-HIV patient [J]. Chinese Journal of Mycology, 2023, 18(2): 156-159. |
[11] | TANG Lujing, LOU Jingan, ZHAO Hong, FU Linchen, HAN Yan. A case report of disseminated cryptococcosis in a child and literature review [J]. Chinese Journal of Mycology, 2023, 18(2): 160-162,177. |
[12] | . [J]. Chinese Journal of Mycology, 2023, 18(2): 163-166,187. |
[13] | ZHANG Chuanming, DAI Wei, NIU Siqiang, XU Xiuyu. Clinical data and drug susceptibilities of Cryptococcus neoformans infection cases in a hospital in recent 5 years in Chongqing [J]. Chinese Journal of Mycology, 2022, 17(4): 269-272,293. |
[14] | ZHU Junfeng, ZHOU Ziyang, HU Wangchao, TANG Jianguo. Analysis of clinical characteristics and risk factors of nosocomial fungal urinary tract infection in ICU [J]. Chinese Journal of Mycology, 2022, 17(4): 273-277. |
[15] | HUO Qin, LIU Min, YANG Honghong, LIU Qian, WU Yushan, LI Mingjun, SHI Feng, HE Kun. Amphotericin B in the treatment of AIDS with cryptococcal meningitis clinical features, diagnosis and treatment of 40 cases [J]. Chinese Journal of Mycology, 2022, 17(4): 278-282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||