[1] Cunha MM, Franzen AJ, Alviano DS, et al. Inhibition of melanin synthesis pathway by tricyclazole increases susceptibility of Fonsecaea pedrosoi against mouse macrophages[J]. Microsc Res Tech, 2005, 68(6):377-384. [2] Franzen AJ, Cunha MM, Batista EJ, et al. Effects of tricyclazole (5-methyl-1, 2, 4-triazol benzothiazole), a specific DHN-melanin inhibitor, on the morphology of Fonsecaea pedrosoi conidia and sclerotic cells[J]. Microsc Res Tech, 2006, 69(9):729-737. [3] Santos AL, Palmeira VF, Rozental S, et al. Biology and pathogenesis of Fonsecaea pedrosoi, the major etiologic agent of chromoblastomycosis[J]. FEMS Microbiol Rev, 2007, 31(5):570-591. [4] Farbiarz SR, de Carvalho TU, Alviano C, et al. Inhibitory effect of melanin on the interaction of Fonsecaea pedrosoi with mammalian cells in vitro[J]. J Med Vet Mycol, 1992(4):265-273. [5] Nosanchuk JD, Rosas AL, Casadevall A. The antibody response to fungal melanin in mice[J]. J Immunol, 1998, 160(12):6026-6031. [6] Polak A, Dixon DM. Loss of melanin in Wangiella dermatitidis does not result in greater susceptibility to antifungal agents.[J]. Antimicrob Agents Chemother, 1989, 33(9):1639-1640. [7] van de Sande WW, de Kat J, Coppens J, et al. Melanin biosynthesis in Madurella mycetomatis and its effect on susceptibility to itraconazole and ketoconazole[J]. Microbes Infect, 2007, 9(9):1114-1123. [8] Sun J, Zhang J, Najafzadeh MJ, et al. Melanization of a meristematic mutant of Fonsecaea monophora increases tolerance to stress factors while no effects on antifungal susceptibility[J]. Mycopathologia, 2011, 172(5):373-380. [9] De Hoog GS, Attili-Angelis D, Vicente VA, et al. Molecular ecology and pathogenic potential of Fonsecaea species[J]. Med Mycol, 2004, 42(5):405-416. [10] Queiroz-Telles F, Esterre P, Perez-Blanco M, et al. Chromoblastomycosis:an overview of clinical manifestations, diagnosis and treatment[J]. Med Mycol, 2009, 47(1):3-15. [11] Xi L, Sun J, Lu C, et al. Molecular diversity of Fonsecaea (Chaetothyriales) causing chromoblastomycosis in southern China[J]. Med Mycol, 2009, 47(1):27-33. [12] 蒋丽, 张军民, 孙九峰, 等. Fonsecaea monophora对巨噬细胞TLR2、TLR4、Dectin-1和TNF-α表达的影响[J]. 中国真菌学杂志, 2014, 9(3):134-138. [13] Zhang J, Wang L, Xi L, et al. Melanin in a meristematic mutant of Fonsecaea monophora inhibits the production of nitric oxide and Th1 cytokines of murine macrophages[J]. Mycopathologia, 2013, 175(5-6):515-522. [14] Fetzner R, Seither K, Wenderoth M, et al. Alternaria alternata transcription factor CmrA controls melanization and spore development[J]. Microbiology (Reading), 2014, 160(Pt 9):1845-1854. [15] Akoumianaki T, Kyrmizi I, Valsecchi I, et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity[J]. Cell Host Microbe, 2016, 19(1):79-90. [16] Nóbrega YK, Lozano VF, de Araújo TS, et al. The cell wall fraction from Fonsecaea pedrosoi stimulates production of different profiles of cytokines and nitric oxide by murine peritoneal cells in vitro[J]. Mycopathologia, 2010, 170(2):89-98. [17] Da SM, Marques AF, Nosanchuk JD, et al. Melanin in the dimorphic fungal pathogen Paracoccidioides brasiliensis:effects on phagocytosis, intracellular resistance and drug susceptibility[J]. Microbes Infect, 2006, 8(1):197-205. [18] Nosanchuk JD, Casadevall A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds[J]. Antimicrob Agents Chemother, 2006, 50(11):3519-3528. [19] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [20] Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278. [21] Fuller KK, Chen S, Loros JJ, et al. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus[J]. Eukaryot Cell, 2015, 14(11):1073-1080. [22] Nødvig CS, Nielsen JB, Kogle ME, et al. A CRISPR-Cas9 system for genetic engineering of filamentous fungi[J]. PLoS One, 2015, 10(7):e133085. [23] Wenderoth M, Pinecker C, Voß B, et al. Establishment of CRISPR/Cas9 in Alternaria alternata[J]. Fungal Genet Biol, 2017, 101:55-60. [24] Liu R, Chen L, Jiang Y, et al. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system[J]. Cell Discov, 2015, 1:15007. [25] Arazoe T, Ogawa T, Miyoshi K, et al. Tailor-made TALEN system for highly efficient targeted gene replacement in the rice blast fungus[J]. Biotechnol Bioeng, 2015, 112(7):1335-1342. [26] Schuster M, Trippel C, Happel P, et al. Single and multiplexed gene editing in Ustilago maydis using CRISPR-Cas9[J]. Bio-protocol, 2018, 8(14):e2928. |