[1] Abad A, Fernandez-Molina JV, Bikandi J, et al. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis[J]. Rev Iberoam Micol, 2010, 27(4): 155-182. [2] Siqueira JPZ, Wiederhold N, Gene J, et al. Cryptic Aspergillus from clinical samples in the USA and description of a new species in section Flavipedes[J]. Mycoses, 2018, 61(11): 814-825. [3] Lass-Florl C, Cuenca-Estrella M. Changes in the epidemiological landscape of invasive mould infections and disease[J]. J Antimicrob Chemother, 2017, 72(Suppl 1): i5-i11. [4] Lamoth F. Aspergillus fumigatus-related species in clinical practice[J]. Front Microbiol, 2016, 7: 683. [5] Gautier M, Normand AC, Ranque S. Previously unknown species of Aspergillus[J]. Clin Microbiol Infect, 2016, 22(8): 662-669. [6] Balajee SA, Gribskov JL, Hanley E, et al. Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus[J]. Eukaryot Cell, 2005, 4(3): 625-632. [7] Tetsuka N, Yaguchi T, Machida H, et al. Invasive pulmonary aspergillosis due to azole-resistant Aspergillus lentulus[J]. Pediatr Int, 2017, 59(3): 362-363. [8] Yagi K, Ushikubo M, Maeshima A, et al. Invasive pulmonary aspergillosis due to Aspergillus lentulus in an adult patient: A case report and literature review[J]. Journal of Infection and Chemotherapy, 2019, 25(7): 547-551. [9] Prigitano A, Esposto MC, Grancini A, et al. Prospective multicentre study on azole resistance in Aspergillus isolates from surveillance cultures in haematological patients in Italy[J]. J Glob Antimicrob Resist, 2020, 22: 231-237. [10] Pfaller MA, Rhomberg PR, Messer SA, et al. Isavuconazole, micafungin, and 8 comparator antifungal agents' susceptibility profiles for common and uncommon opportunistic fungi collected in 2013: temporal analysis of antifungal drug resistance using CLSI species-specific clinical breakpoints and proposed epidemiological cutoff values[J]. Diagn Microbiol Infect Dis, 2015, 82(4): 303-313. [11] Datta K, Rhee P, Byrnes E 3rd, et al. Isavuconazole activity against Aspergillus lentulus, Neosartorya udagawae, and Cryptococcus gattii, emerging fungal pathogens with reduced azole susceptibility[J]. J Clin Microbiol, 2013, 51(9): 3090-3093. [12] Perez-Cantero A, Lopez-Fernandez L, Guarro J, et al. Azole resistance mechanisms in Aspergillus: update and recent advances[J]. Int J Antimicrob Agents, 2020, 55(1): 105807. [13] Fuchs BB, Eby J, Nobile CJ, et al. Role of filamentation in Galleria mellonella killing by Candida albicans[J]. Microbes Infect, 2010, 12(6): 488-496. [14] Ramarao N, Nielsen-Leroux C, Lereclus D. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis[J]. J Vis Exp, 2012, (70): e4392. [15] Jackson JC, Higgins LA, Lin X. Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella[J]. PLoS One, 2009, 4(1): e4224. [16] Maccallum DM. Hosting infection: experimental models to assay Candida virulence[J]. Int J Microbiol, 2012, 2012: 363764. [17] Ames L, Duxbury S, Pawlowska B, et al. Galleria mellonella as a host model to study Candida glabrata virulence and antifungal efficacy[J]. Virulence, 2017, 8(8): 1909-1917. [18] Maurer E, Browne N, Surlis C, et al. Galleria mellonella as a host model to study Aspergillus terreus virulence and amphotericin B resistance[J]. Virulence, 2015, 6(6): 591-598. [19] Mowlds P, Barron A, Kavanagh K. Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans[J]. Microbes Infect, 2008, 10(6): 628-634. [20] 戴京京, 桑玉欣, 崔北金, 等. 蜡螟在念珠菌属真菌动物模型中应用价值的探究[J]. 2015, 27(6): 44-47. [21] Slater JL, Gregson L, Denning DW, et al. Pathogenicity of Aspergillus fumigatus mutants assessed in Galleria mellonella matches that in mice[J]. Med Mycol, 2011, 49 (Suppl 1): S107-113. [22] Eisenman HC, Duong R, Chan H, et al. Reduced virulence of melanized Cryptococcus neoformans in Galleria mellonella[J]. Virulence, 2014, 5(5): 611-618. [23] Brennan M, Thomas D, Whiteway M, et al. Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae[J]. 2002, 34(2): 153-157. [24] Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes[J]. Virulence, 2013, 4(7): 597-603. [25] Trevijano-Contador N, Zaragoza O. Immune response of Galleria mellonella against human fungal pathogens[J]. J Fungi (Basel), 2018, 5(1):3. [26] Frisvad JC, Larsen TO. Extrolites of Aspergillus fumigatus and other pathogenic species in Aspergillus section Fumigati[J]. Front Microbiol, 2015, 6: 1485. [27] Fallon JP, Reeves EP, Kavanagh K. The Aspergillus fumigatus toxin fumagillin suppresses the immune response of Galleria mellonella larvae by inhibiting the action of haemocytes[J]. Microbiology (Reading), 2011, 157(Pt 5): 1481-1488. [28] Saïd-Sadier N, Padilla E, Langsley G, et al. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase[J]. 2010, 5(4): e10008. [29] 姬名硕,王晓东,帕丽达·阿布利孜, 等.分离自1例COPD患者的Aspergillus lentulus菌株对蜡螟幼虫生存率、体表黑色素化及活动度的影响[J].山东医药,2020,60(12):37-41. |