[1] Dagenais TR, Keller NP. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis[J]. Clin Microbiol Rev, 2009,22(3):447-465.
[2] Balloy V, Chignard M. The innate immune response to Aspergillus fumigatus[J]. Microbes Infect, 2009,11(12):919-927.
[3] Krappmann S. How to invade a susceptible host:cellular aspects of aspergillosis[J]. Curr Opin Microbiol, 2016,34:136-146.
[4] Walsh TJ, Anaissie EJ, Denning DW, et al. Treatment of aspergillosis:clinical practice guidelines of the Infectious Diseases Society of America[J]. Clin Infect Dis, 2008,46(3):327-360.
[5] Sanglard D. Emerging threats in antifungal-resistant fungal pathogens[J].Front Med, 2016,3(11):1-10.
[6] Alcazar-Fuoli L, Mellado E. Ergosterol biosynthesis in Aspergillus fumigatus:its relevance as an antifungal target and role in antifungal drug resistance[J]. Front Microbiol, 2012,3(439):439-445.
[7] Anderson TM, Clay MC, Cioffi AG, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge[J]. Nat Chem Biol, 2014,10(5):400-406.
[8] Goncalves SS. Global aspects of triazole resistance in Aspergillus fumigatus with focus on Latin American countries[J]. J Fungi, 2017,3(1):e5.
[9] Lelievre L, Groh M, Angebault C, et al. Azole resistant Aspergillus fumigatus:an emerging problem[J]. Med Mal Infect, 2013,43(4):139-145.
[10] Nierman WC, Pain A, Anderson MJ, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus[J]. Nature, 2005,438(7071):1151-1156.
[11] Zhong YH, Wang XL, Wang TH, et al.Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis[J]. Appl Microbiol Biotechnol, 2007,73(6):1348-1354.
[12] Mullins ED, Chen X, Romaine P, et al.Agrobacterium-mediated transformation of Fusarium oxysporum:an efficient tool for insertional mutagenesis and gene transfer[J]. Phytopathology, 2001,91(2):173-180.
[13] Fang W, Pei Y, Bidochka MJ. Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens[J]. Can J Microbiol, 2006,52(7):623-626.
[14] Hwang HH, Yu M, Lai EM.Agrobacterium-mediated plant transformation:biology and applications[J]. Arabidopsis Book, 2017,15:e0186.
[15] Sugui JA, Chang YC, Kwon-Chung KJ.Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus:an efficient tool for insertional mutagenesis and targeted gene disruption[J]. Appl Environ Microbiol, 2005,71(4):1798-1802.
[16] Jiang H, Shen Y, Liu W, et al. Deletion of the putative stretch-activated ion channel Mid1 is hypervirulent in Aspergillus fumigatus[J]. Fungal Genet Biol, 2014,62:62-70.
[17] Long N, Zeng L, Qiao S, et al.Aspergillus fumigatus Afssn3-Afssn8 pair reverse regulates azole resistance by conferring extracellular polysaccharide, sphingolipid pathway intermediates, and efflux pumps to biofilm[J]. Antimicrob Agents Chemother, 2018,62(3):e01978-17.
[18] Wei X, Zhang Y, Lu L. The molecular mechanism of azole resistance in Aspergillus fumigatus:from bedside to bench and back[J]. J Microbiol, 2015,53(2):91-99.
[19] Snelders E, Karawajczyk A, Schaftenaar G, et al. Azole resistance profile of amino acid changes in Aspergillus fumigatus CYP51A based on protein homology modeling[J]. Antimicrob Agents Chemother, 2010,54(6):2425-2430.
[20] Cannon RD, Lamping E, Holmes AR, et al. Efflux-mediated antifungal drug resistance[J]. Clin Microbiol Rev, 2009,22(2):291-321.
[21] Slaven JW, Anderson MJ, Sanglard D, et al. Increased expression of a novel Aspergillus fumigatus ABC transporter gene, atrF, in the presence of itraconazole in an itraconazole resistant clinical isolate[J]. Fungal Genet Biol, 2002,36(3):199-206.
[22] Wei X, Chen P, Gao R, et al. Screening and characterization of a Non-cyp51A mutation in an Aspergillus fumigatus cox10 strain conferring azole resistance[J]. Antimicrob Agents Chemother, 2017,61(1):e02101-2116.
[23] Beauvais A, Latge JP.Aspergillus biofilm in vitro and in vivo[J]. Microbiol Spectr, 2015,3(4):MB-0017-2015. |