[1] Cota E, Hoyer LL. The Candida albicans agglutinin-like sequence family of adhesins:functional insights gained from structural analysis[J]. Future Microbiol, 2015,10(10):1635-1648.
[2] Delgado-Silva Y, Vaz C, Carvalho-Pereira J, et al. Participation of Candida albicans transcription factor RLM1 in cell wall biogenesis and virulence[J]. PLoS One, 2014, 9(1):e86270.
[3] Moazeni M, Khorramizadeh MR, Teimoori-Toolabi L, et al. Down-regulation of the ALS3 gene as a consequent effect of RNA-mediated silencing of the EFG1 gene in Candida albicans[J]. Iran Biomed J, 2012;16(4):172-178.
[4] Peters BM, Ovchinnikova ES, Krom BP, et al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p[J]. Microbiology, 2012, 158(12):2975-2986.
[5] Roudbarmohammadi S, Roudbary M, Bakhshi B, et al. ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis[J]. Adv Biomed Res, 2016, 5(1):105.
[6] Beaussart A, Alsteens D, El-kirat-Chatel S, et al. Single-molecule imaging and functional analysis of Als adhesins and mannans during Candida albicans morphogenesis[J]. Acs Nano, 2012, 6(12):10950-10964.
[7] Hoyer LL, Cota E. Candida albicans agglutinin-like sequence (Als) family vignettes:a review of Als protein structure and function[J]. Front Microbiol, 2016, 7:280.
[8] Lin J, Oh SH, Jones R, et al. The peptide-binding cavity is essential for Als3-mediated adhesion of Candida albicans to human cells[J]. J Biol Chem, 2014, 289(26):18401-18412.
[9] Cleary IA, Reinhard SM, Miller CL, et al. Candida albicans adhesin Als3p is dispensable for virulence in the mouse model of disseminated candidiasis[J]. Microbiology, 2011, 157(6):1806-1815.
[10] Morenoruiz E, Galándíez M, Zhu W, et al. Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism[J]. Cell Microbiol, 2009, 11(8):1179-1189.
[11] Ariyachet C, Solis NV, Liu Y, et al. SR-like RNA-binding protein Slr1 affects Candida albicans filamentation and virulence[J]. Infect Immun, 2013, 81(4):1267-1276.
[12] Alves CT, Wei XQ, Silva S, et al. Candida albicans promotes invasion and colonisation of Candida glabrata in a reconstituted human vaginal epithelium[J]. J Infect, 2014, 69(4):396-407.
[13] Martin R, Wchtler B, Schaller M, et al. Host-pathogen interactions and virulence-associated genes during Candida albicans, oral infections[J]. Int J Med Microbiol, 2011, 301(5):417-422.
[14] Sorgo AG, Brul S, de Koster CG, et al. Iron restriction-induced adaptations in the wall proteome of Candida albicans[J]. Microbiology, 2013, 159(8):1673-1682.
[15] Noble SM. Candida albicans specializations for iron homeostasis:from commensalism to virulence[J]. Curr Opin Microbiol, 2013, 16(6):708-715.
[16] Chen C, Pande K, French SD, et al. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis[J]. Cell Host Microbe, 2011, 10(2):118-135.
[17] Nailis H, Kucharíková S, iicová M, et al. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans, biofilms:identification of model-dependent and -independent gene expression[J]. BMC Microbiol, 2010, 10(1):114.
[18] Nobile CJ, Andes DR, Nett JE, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo[J]. PLoS Pathog, 2006, 2(7):e63.
[19] Matsumoto H, Nagao J, Cho T, et al. Evaluation of pathogenicity of Candida albicans in germination-ready states using a silkworm infection model[J]. Med Mycol J, 2013, 54(2):131-140.
[20] Moragues MD, Rementeria A, Sevilla MJ, et al. Candida antigens and immune responses:implications for a vaccine[J]. Expert Rev Vaccines, 2014, 13(8):1001-1012.
[21] Ibrahim AS, Luo G, Gebremariam T, et al. NDV-3 protects mice from vulvovaginal candidiasis through T-and B-cell immune response[J]. Vaccine, 2013, 31(47):5549-5556.
[22] Cassone A. Development of vaccines for Candida albicans:fighting a skilled transformer[J]. Nat Rev Microbiol, 2013, 11(12):884-891.
[23] Garcia-Vidal C, Carratalà J. Pathogenesis of invasive fungal infections[J]. Curr Opin Infect Dis, 2013, 26(3):270-276.
[24] Naglik JR, Fostira F, Ruprai J, et al. Candida albicans HWP1 gene expression and host antibody responses in colonization and disease[J]. J Med Microbiol, 2006, 55(10):1323-1327.
[25] Kim S, Nguyen QB, Wolyniak MJ, et al. Release of transcriptional repression through the HCR promoter region confers uniform expression of HWP1 on surfaces of Candida albicans germ tubes[J]. PLoS One, 2018, 13(2):e0192260.
[26] Staab JF, Datta K, Rhee P. Niche-specific requirement for hyphal wall protein 1 in virulence of Candida albicans[J]. PLoS One, 2013, 8(11):e80842.
[27] An D, Wang X, Li J, et al. The activity of fungichromin against the formation of Candida albicans Biofilm[J]. Biol Pharm Bull, 2016, 39(12):1948-1954.
[28] Zeng B, Li J, Wang Y, et al. In vitro and in vivo effects of suloctidil on growth and biofilm formation of the opportunistic fungus Candida albicans[J]. Oncotarget, 2017, 8(41):69972-69982.
[29] Matsuda Y, Cho O, Sugita T, et al. Culture supernatants of Lactobacillus gasseri and L. crispatus inhibit Candida albicans biofilm formation and adhesion to HeLa cells[J]. Mycopathologia, 2018,183(4):691-700.
[30] Belmadani A, Semlali A, Rouabhia M. Dermaseptin-S1 decreases C.albicans growth, biofilm formation and the expression of hyphal wall protein 1 and aspartic proteases genes[J]. J Appl Microbiol, 2018,125(1):72-83.
[31] Wang S, Wang Q, Yang E, et al. Antimicrobial compounds produced by vaginal Lactobacillus crispatus are able to strongly inhibit Candida albicans growth, hyphal formation and regulate virulence-related gene expressions[J]. Front Microbiol,2017, 8:564.
[32] Freire F, de Barros PP, Pereira CA, et al. Photodynamic inactivation in the expression of the Candida albicans genes ALS3, HWP1, BCR1, TEC1, CPH1, and EFG1 in biofilms[J]. Lasers Med Sci, 2018,33(7):1447-1454.
[33] Shi D, Zhao Y, Yan H, et al. Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans[J]. Int J Clin Pharmacol Ther, 2016, 54(5):343-353.
[34] Semlali A, Killer K, Alanazi H, et al. Cigarette smoke condensate increases C. albicans, adhesion, growth, biofilm formation, and EAP1, HWP1 and SAP2, gene expression[J]. BMC Microbiol, 2014, 14(1):61.
[35] Orsi CF, Borghi E, Colombari B, et al. Impact of Candida albicans hyphal wall protein 1(HWP1) genotype on biofilm production and fungal susceptibility to microglial cells[J]. Microb Pathog, 2014, 69-70(4):20-27.
[36] Younes S, Bahnan W, Dimassi HI, et al. The Candida albicans Hwp2 is necessary for proper adhesion, biofilm formation and oxidative stress tolerance[J]. Microbiol Res, 2011, 166(5):430-436.
[37] Hayek P, Dib L, Yazbeck P, et al. Characterization of Hwp2, a Candida albicans, putative GPI-anchored cell wall protein necessary for invasive growth[J]. Microbiol Res, 2010, 165(3):250-258.
[38] Li F, Palecek SP. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions[J]. Microbiology, 2008, 154(4):1193-1203.
[39] Shahin-Jafari A, Bayat M, Shahhosseiny MH, et al. Effect of long-term exposure to mobile phone radiation on alpha-Int1 gene sequence of Candida albicans[J]. Saudi J Biol Sci, 2016, 23(3):426-433.
[40] Boisramé A, Cornu A, Da Costa G, et al. Unexpected role for a serine/threonine-rich domain in the Candida albicans Iff protein family[J]. Eukaryot Cell, 2011,10(10):1317-1330.
[41] Bates S, de la Rosa JM, MacCallum DM, et al. Candida albicans Iff11, a secreted protein required for cell wall structure and virulence[J]. Infect Immun, 2007,75(6):2922-2928.
[42] Fu Y, Luo G, Spellberg BJ, et al. Gene Overexpression/Suppression Analysis of Candidate Virulence Factors of Candida albicans[J]. Eukaryot Cell,2008, 7(3):483-492.
[43] Kempf M, Apaire-Marchais V, Saulnier P, et al. Disruption of Candida albicans IFF4 gene involves modifications of the cell electrical surface properties[J]. Colloids Surf B Biointerfaces, 2007, 58(2):250-255.
[44] Liu Y, Filler SG. Candida albicans Als3, a multifunctional adhesin and invasin[J]. Eukaryot Cell, 2011, 10(2):168-173.
[45] Luo G, Ibrahim AS, French SW, et al. Active and passive immunization with rHyr1p-N protects mice against hematogenously disseminated candidiasis[J]. PLoS One, 2011, 6(10):e25909.
[46] Orellana-Muoz S, Dueas-Santero E, Arnáiz-Pita Y, et al. The anillin-related Int1 protein and the Sep7 septin collaborate to maintain cellular ploidy in Candida albicans[J]. Sci Rep, 2018, 8(1):2257.
[47] Green JV, Orsborn KI, Zhang M, et al. Heparin-binding motifs and biofilm formation by Candida albicans[J]. J Infect Dis, 2013, 208(10):1695-1704.
[48] Wiesner SM, Bendel CM, Hess DJ, et al. Adherence of yeast and filamentous forms of Candida albicans to cultured enterocytes[J]. Crit Care Med, 2002, 30(3):677-683. |