[1] Campoy S,Adrio JL.Antifungals[J].Biochem Pharmacol,2017,133:86-96.
[2] Peyton LR,Gallagher S,Hashemzadeh M.Triazole antifungals:a review[J].Drugs Today (Barc),2015,51(12):705-718.
[3] Moore JN,Healy JR,Kraft WK.Pharmacologic and clinical evaluation of posaconazole[J].Expert Rev Clin Pharmacol,2015,83(3):321-334.
[4] Shirley M,Scott LJ.Isavuconazole:a review in invasive aspergillosis and mucormycosis[J].Drugs,2016,76(17):1647-1657.
[5] Osherov N,Kontoyiannis DP.The anti-Aspergillus drug pipeline:is the glass half full or empty?[J].Med Mycol,2017,55(1):118-124.
[6] Torrado JJ,Espada R,Ballesteros MP,et al.Amphotericin B formulations and drug targeting[J].J Pharm Sci, 2008,97(7):2405-2425.
[7] Halperin A,Shadkchan Y,Pisarevsky E,et al.Novel watersoluble amphotericin B-PEG conjugates with low toxicity and potent in vivo efficacy[J]. J Med Chem,2016,59(3):1197-1206.
[8] Ickowicz DE,Farber S,Sionov E,et al.Activity, reduced toxicity, and scale-up synthesis of amphotericin B-conjugated polysaccharide[J]. Biomacromolecules,2014,15(6):2079-2089.
[9] Shirkhani K,Teo I,Armstrong-James D,et al.Nebulised amphotericin B-polymethacrylic acid nanoparticle prophylaxis prevents invasive aspergillosis[J].Nanomedicine,2015,11(5):1217-1226.
[10] Denning DW.Echinocandin antifungal drugs[J].Lancet,2003,362(9390):1142-1151.
[11] Chang CC,Slavin MA,Chen SC.New developments and directions in the clinical application of the echinocandins[J].Arch Toxicol,2017,91(4):1613-1621.
[12] Roemer T,Krysan DJ.Antifungal drug development:challenges, unmet clinical needs, and new approaches[J]. Cold Spring Harb Perspect Med,2014,4(5):a019703.
[13] Denning DW,BromLey MJ.Infectious Disease. How to bolster the antifungal pipeline[J].Science,2015,347(6229):1414-1416.
[14] Hoekstra WJ,Garvey EP,Moore WR,et al.Design and optimization of highly-selective fungal CYP51 inhibitors[J].Bioorg Med Chem Lett,2014,24(15):3455-3458.
[15] Warrilow AGS,Martel CM,Parker JE,et al.The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme[J].Antimicrob Agents Chemother,2014,58(12):7121-7127.
[16] Garvey EP,Hoekstra WJ,Schotzinger RJ,et al.Efficacy of the clinical agent VT-1161 against fluconazole-sensitive and -resistant Candida albicans in a murine model of vaginal candidiasis[J].Antimicrob Agents Chemother,2015,59(9):5567-5573.
[17] Shubitz LF,Trinh HT,Galgiani JN,et al.Evaluation of VT-1161 for treatment of coccidioidomycosis in murine infection models[J].Antimicrob Agents Chemother,2015,59(12):7249-7254.
[18] Shubitz LF,Roy ME,Trinh HT,et al.Efficacy of the investigational antifungal VT-1161 in treating naturally occurring Coccidioidomycosis in dogs[J].Antimicrob Agents Chemother,2017,61(5):e00111-17.
[19] Garvey EP,Hoekstra WJ,Moore WR,et al.VT-1161 dosed once daily or once weekly exhibits potent efficacy in treatment of dermatophytosis in a guinea pig model[J].Antimicrob Agents Chemother,2015,59(4):1992-1997.
[20] Gebremariam T,Wiederhold NP,Fothergill AW,et al.VT-1161 protects immunosuppressed mice from Rhizopus arrhizus var. arrhizus infection[J].Antimicrob Agents Chemother,2015,59(12):7815-7817.
[21] Lockhart SR,Fothergill AW,Wiederhold NP,et al. The investigational fungal Cyp51 inhibitor VT-1129 demonstrates potent in vitro activity against Cryptococcus neoformans and Cryptococcus gattii[J].Antimicrob Agents Chemother,2016,60(4):2528-2531.
[22] Nielsen K,Vedula P,Smith KD,et al.Activity of VT-1129 against Cryptococcus neoformans clinical isolates with high fluconazole MICs[J].Med Mycol,2017,55(4):453-456.
[23] Warrilow AGS,Parker JE,Price CL,et al.The investigational drug VT-1129 is a highly potent inhibitor of Cryptococcus species CYP51 but only weakly inhibits the human enzyme[J].Antimicrob Agents Chemother,2016,60(8):4530-4538.
[24] Schell WA,Jones AM,Garvey EP,et al.Fungal CYP51 Inhibitors VT-1161 and VT-1129 exhibit strong in vitro activity against Candida glabrata and C. krusei isolates clinically resistant to azole and echinocandin antifungal compounds[J].Antimicrob Agents Chemother,2017,61(3):e01817-16.
[25] Hargrove TY,Garvey EP,Hoekstra WJ,et al. Crystal structure of the new investigational drug candidate VT-1598 in complex with Aspergillus fumigatus sterol 14α-Demethylase provides insights into its broad-spectrum antifungal activity[J].Antimicrob Agents Chemother,2017,61(7):e00570-17.
[26] Wiederhold NP,Patterson HP,Tran BH,et al. Fungal-specific Cyp51 inhibitor VT-1598 demonstrates in vitro activity against Candida and Cryptococcus species, endemic fungi, including Coccidioides species, Aspergillus species and Rhizopus arrhizus[J]. J Antimicrob Chemother,2018,73(2):404-408.
[27] Ong V,James KD,Smith S,et al.Pharmacokinetics of the novel echinocandin CD101 in multiple animal species[J].Antimicrob Agents Chemother,2017,61(4):e01626-16.
[28] Sandison T,Ong V,Lee J,et al.Safety and pharmacokinetics of CD101 IV, a novel echinocandin, in healthy adults[J].Antimicrob Agents Chemother,2017,61(2):e01627-16.
[29] Zhao Y, Perez WB,Jiménez-Ortigosa C,et al. CD101:a novel long-acting echinocandin[J].Cell Microbiol,2016,18(9):1308-1316.
[30] Pfaller MA,Messer SA,Rhomberg PR,et al.Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against Candida and Aspergillus spp., including echinocandin-and azole-resistant isolates[J].J Antimicrob Chemother,2016,71(10):2868-2873.
[31] James KD,Laudeman CP,Malkar NB,et al. Structure-Activity Relationships of a Series of Echinocandins and the Discovery of CD101, a Highly Stable and Soluble Echinocandin with Distinctive Pharmacokinetic Properties[J].Antimicrob Agents Chemother,2017,61(2):e01541-16.
[32] Pfaller MA,Messer SA,Rhomberg PR,et al. Activity of a long-acting echinocandin (CD101) and seven comparator antifungal agents tested against a global collection of contemporary invasive fungal isolates in the SENTRY 2014 Antifungal Surveillance Program[J].Antimicrob Agents Chemother,2017,61(3):e02045-16.
[33] Pfaller MA,Messer SA,Rhomberg PR,et al.CD101, a long-acting echinocandin, and comparator antifungal agents tested against a global collection of invasive fungal isolates in the SENTRY 2015 Antifungal Surveillance Program[J].Int J Antimicrob Agents,2017,50(3):352-358.
[34] Ong V,Hough G,Schlosser M,et al.Preclinical evaluation of the stability, safety, and efficacy of CD101, a novel echinocandin[J].Antimicrob Agents Chemother,2016,60(11):6872-6879.
[35] Zhao Y,Prideaux B, Nagasaki Y,et al. Unraveling Drug Penetration of Echinocandin Antifungals at the Site of Infection in an Intra-abdominal Abscess Model[J].Antimicrob Agents Chemother,2017,61(10):e01009-17.
[36] Krishnan BR,James KD,Polowy K,et al.CD101, a novel echinocandin with exceptional stability properties and enhanced aqueous solubility[J].J Antibiot (Tokyo),2017,70(2):130-135.
[37] Lakota EA,Bader JC,Ong V,et al.Pharmacological basis of CD101 efficacy:exposure shape matters[J]. Antimicrob Agents Chemother,2017,61(11):e00758-17.
[38] Hector RF,Bierer DE.New β-glucan inhibitors as antifungal drugs[J]. Expert Opin Ther Pat,2011,21(10):1597-1610.
[39] Onishi J,Meinz M,Thompson J,et al.Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors[J]. Antimicrob Agents Chemother,2000,44(2):368-377.
[40] Scorneaux B,Angulo D,Borroto-Esoda K,et al.SCY-078 is fungicidal against Candida species in time-kill studies[J].Antimicrob Agents Chemother,2017,61(3):e01961-16.
[41] Lepak AJ,Marchillo K,Andes DR.Pharmacodynamic target evaluation of a novel oral glucan synthase inhibitor, SCY-078(MK-3118), using an in vivo murine invasive candidiasis model[J].Antimicrob Agents Chemother,2015,59(2):1265-1272.
[42] Schell WA,Jones AM,Borroto-Esoda K,et al.Antifungal activity of SCY-078 and standard antifungal agents against 178 clinical isolates of resistant and susceptible Candida species[J].Antimicrob Agents Chemother,2017,61(11):e01102-17.
[43] Pfaller MA,Messer SA,Motyl MR,et al.Activity of MK-3118, a new oral glucan synthase inhibitor, tested against Candida spp. by two international methods (CLSI and EUCAST)[J]. J Antimicrob Chemother,2013,68(4):858-863.
[44] Pfaller MA,Messer SA,Motyl MR,et al.In vitro activitity of a new oral glucan synthase inhibitor (MK-3118) tested against Aspergillus spp. by CLSI and EUCAST broth microdilution methods[J].Antimicrob. Agents Chemother,2013,57(2):1065-1068.
[45] Jimenez-Ortigosa C,Paderu P,Motyl MR,et al.Enfumafungin derivative MK-3118 shows increased in vitro potency against clinical echinocandin-resistant Candida species and Aspergillus species isolates[J].Antimicrob Agents Chemother,2014,58(2):1248-1251.
[46] Pfaller MA,Messer SA,Rhomberg PR,et al.Differential activity of the oral glucan synthase inhibitor SCY-078 against wild-type and echinocandin-resistant strains of Candida species[J].Antimicrob Agents Chemother,2017,61(8):e00161-17.
[47] Lamoth F,Alexander BD.Antifungal activities of SCY-078(MK-3118) and standard antifungal agents against clinical non-Aspergillus mold isolates[J].Antimicrob Agents Chemother,2015,59(7):4308-4311.
[48] Larkin E,Hager C,Chandra J,et al.The emerging pathogen Candida auris:growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation[J].Antimicrob Agents Chemother,2017,61(5):e02396-16.
[49] Wring SA,Randolph R,Park S,et al.Preclinical pharmacokinetics and pharmacodynamic target of SCY-078, a first-in-class orally active antifungal glucan synthesis inhibitor, in murine models of disseminated candidiasis[J].Antimicrob Agents Chemother,2017,61(4):e02068-16.
[50] Richard ML,Plaine A.Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans[J].Eukaryot Cell,2007,6(2):119-133.
[51] Tsukahara K,Hata K,Nakamoto K,et al.Medicinal genetics approach towards identifying the molecular target of a novel inhibitor of fungal cell wall assembly[J].Mol Microbiol,2003,48(4):1029-1042.
[52] Umemura M,Okamoto M,Nakayama K,et al.GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast[J]. J Biol Chem,2003,278(26):23639-23647.
[53] Watanabe NA,Miyazaki M,Horii T,et al.E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis[J].Antimicrob. Agents Chemother,2012,56(2):960-971.
[54] Miyazaki M,Horii T,Hata K,et al.In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds[J].Antimicrob Agents Chemother,2011,55(10):4652-4658.
[55] Pfaller MA,Hata K,Jones RN,et al.In vitro activity of a novel broad-spectrum antifungal, E1210, tested against Candida spp. as determined by CLSI broth microdilution method[J].Diagn Microbiol Infect Dis,2011,71(2):167-170.
[56] Pfaller MA,Duncanson F,Messer SA,et al.In vitro activity of a novel broad-spectrum antifungal, E1210, tested against Aspergillus spp. determined by CLSI and EUCAST broth microdilution methods[J].Antimicrob Agents Chemother,2011,55(11):5155-5158.
[57] Castanheira M,Duncanson FP,Diekema DJ,et al.Activities of E1210 and comparator agents tested by CLSI and EUCAST broth microdilution methods against Fusarium and Scedosporium species identified using molecular methods[J].Antimicrob Agents Chemother,2012,56(1):352-357.
[58] Wiederhold NP,Najvar LK,Fothergill AW,et al.The investigational agent E1210 is effective in treatment of experimental invasive candidiasis caused by resistant Candida albicans[J].Antimicrob Agents Chemother,2015,59(1):690-692.
[59] Hata K,Horii T,Miyazaki M,et al.Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis[J].Antimicrob Agents Chemother,2011,55(10):4543-4551.
[60] Oliver JD,Sibley GE,Beckmann N,et al.F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase[J].Proc Natl Acad Sci U S A,2016,113(45):12809-12814.
[61] Buil JB,Rijs AJMM,Meis JF,et al.In vitro activity of the novel antifungal compound F901318 against difficult-to-treat Aspergillus isolates[J].J Antimicrob Chemother,2017,72(9):2548-2552.
[62] Miao H,Jiang Y,Cao Y,et al.Inhibitory effect of Shikonin on Candida albicans growth[J].Biol Pharm Bull, 2012,35(11):1956-1963.
[63] Li DD,Zhao LX,Jiang YY,et al.In vitro and in vivo activities of pterostilbene against Candida albicans biofilms[J].Antimicrob Agents Chemother,2014,58(4):2344-2355.
[64] Hu DD,Zhang RL,Jiang YY,et al.The structure-activity relationship of pterostilbene against Candida albicans biofilms[J]. Molecules, 2017,22(3):E360.
[65] Zhao LX,Li DD,Jiang YY et al.Effect of tetrandrine against Candida albicans biofilms[J].PLoS One,2013,8(11):e79671.
[66] Quan H,Cao YY,Jiang YY,et al.Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole[J].Antimicrob Agents Chemother,2006,50(3):1096-1099.
[67] Xu Y,Wang Y,Jiang YY,et al.Proteomic analysis reveals a synergistic mechanism of fluconazole and berberine against fluconazole-resistant Candida albicans:endogenous ROS augmentation[J]. J Proteome Res,2009,8(11):5296-5304.
[68] Li DD,Xu Y,Jiang YY,et al.Fluconazole assists berberine to kill fluconazole-resistant Candida albicans[J]. Antimicrob Agents Chemother,2013,57(12):6016-6027.
[69] Zhu SL,Yan L,Jiang YY,et al.Berberine inhibits fluphenazine-induced up-regulation of CDR1 in Candida albicans[J].Biol Pharm Bull,2014, 37(2):268-273.
[70] Huang S,Cao YY,Jiang YY,et al.In vitro synergism of fluconazole and baicalein against clinical isolates of Candida albicans resistant to fluconazole[J].Biol Pharm Bull,2008,31(12):2234-2236.
[71] 赵柳娅,蒋京辰,姚响文,等.黄芩素与氟康唑协同抗白念珠菌生物被膜作用研究[J].中国真菌学杂志,2014,9(2):70-74.
[72] Dai BD,Cao YY,Jiang YY,et al.Baicalein induces programmed cell death in Candida albicans[J].J Microbiol Biotechnol,2009,19(8):803-809.
[73] Liu W,Li LP,Jiang YY,et al.Synergistic antifungal effect of glabridin and fluconazole[J].PLoS One,2014,9(7):e103442.
[74] Li DD,Chai D,Jiang YY.Potent in vitro synergism of fluconazole and osthole against fluconazole-resistant Candida albicans[J].Antimicrob Agents Chemother,2017,61(8):e00436-17.
[75] Han B,Cao YB,Jiang YY,et al.Antifungal activity of Rubus chingii extract combined with fluconazole against fluconazole-resistant Candida albicans[J].Microbiol Immunol,2016,60(2):82-92.
[76] Zhang L,Lin H,Jiang YY,et al.Antifungal activity of the ethanol extract from Flos Rosae Chinensis with activity against fluconazole-resistant clinical Candida[J].Evid Based Complement Alternat Med,2017,2017:4780746.
[77] Mitsuyama J,Nomura N,Hashimoto K,et al.In vitro and in vivo antifungal activities of T-2307, a novel arylamidine[J].Antimicrob Agents Chemother,2008,52(4):1318-1324.
[78] Wiederhold NP,Najvar LK,Fothergill AW,et al.The novel arylamidine T-2307 maintains in vitro and in vivo activity against echinocandin-resistant Candida albicans[J].Antimicrob Agents Chemother,2015,59(2):1341-1343.
[79] Wiederhold NP,Najvar LK,Fothergill AW,et al.The novel arylamidine T-2307 demonstrates in vitro and in vivo activity against echinocandin-resistant Candida glabrata[J].J Antimicrob Chemother,2016,71(3):692-695.
[80] Nishikawa H,Fukuda Y,Mitsuyama J,et al.In vitro and in vivo antifungal activities of T-2307, a novel arylamidine, against Cryptococcus gattii:an emerging fungal pathogen[J]. J Antimicrob Chemother,2017,72(6):1709-1713.
[81] Yamada E,Nishikawa H,Nomura N,et al.T-2307 shows efficacy in murine model of Candida glabrata infection despite in vitro trailing growth phenomena[J].Antimicrob Agents Chemother,2010,54(9):3630-3634.
[82] Shibata T,Takahashi T,Yamada E,et al.T-2307 causes collapse of mitochondrial membrane potential in yeast[J].Antimicrob Agents Chemother,2012,56(11):5892-5897.
[83] Holden WM,Fites JS,Reinert LK,et al.Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines[J].Fungal Biol,2014,118(1):48-60.
[84] Shubitz LF,Trinh HT,Perrill RH,et al.Modeling nikkomycin Z dosing and pharmacology in murine pulmonary coccidioidomycosis preparatory to phase 2 clinical trials[J].J Infect Dis,2014,209(12):1949-1954.
[85] Arendrup MC,Jensen RH,Cuenca-Estrella M.In vitro activity of ASP2397 against Aspergillus isolates with or without acquired azole resistance mechanisms[J].Antimicrob Agents Chemother,2015,60(1):532-536.
[86] Nakamura I,Kanasaki R,Yoshikawa K,et al.Discovery of a new antifungal agent ASP2397 using a silkworm model of Aspergillus fumigatus infection[J].J Antibiot (Tokyo),2017,70(1):41-44.
[87] Nakamura I,Yoshimura S,Masaki T,et al.ASP2397:a novel antifungal agent produced by Acremonium persicinum MF-347833[J].J Antibiot (Tokyo),2017,70(1):45-51. |