[1] Peleg AY,Hogan DA,Mylonakis E.Medically important bacterial-fungal interactions[J].Nat Rev Microbiol,2010,8(5):340-349.
[2] Jacobsen ID,Wilson D,Wachtler B,et al.Candida albicans dimorphism as a therapeutic target[J].Expert Rev Anti Infect Ther,2012,10(1):85-93.
[3] Pfaller MA,Diekema DJ.Epidemiology of invasive mycoses in North America[J].Crit Rev Microbiol,2010,36(1):1-53.
[4] Gow NA,van de Veerdonk FL,Brown AJ.Netea MG.Candida albicans morphogenesis and host defence:discriminating invasion from colonization[J].Nat Rev Microbiol,2012,10(2):112-122.
[5] Inglis DO,Sherlock G.Ras signaling gets fine-tuned:regulation of multiple pathogenic traits of Candida albicans[J].Eukaryot Cell,2013,12(10):1316-1325.
[6] Shareck J,Belhumeur P.Modulation of morphogenesis in Candida albicans by various small molecules[J].Eukaryot Cell.2011,10(8):1004-1012.
[7] Sudbery PE.Growth of Candida albicans hyphae[J].Nat Rev Microbiol,2011,9(10):737-748.
[8] Lu Y,Su C,Solis NV,Filler SG,et al.Synergistic regulation of hyphal elongation by hypoxia,CO(2),and nutrient conditions controls the virulence of Candida albicans[J].Cell Host & Microbe,2013,14(5):499-509.
[9] Su C,Lu Y,Liu H.Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity[J].Mol Biol Cell,2013,24(3):385-397.
[10] Pierce JV,Dignard D,Whiteway M,et al.Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes[J].Eukaryot Cell,2013,12(1):37-49.
[11] Lee IR,Morrow CA,Fraser JA.Nitrogen regulation of virulence in clinically prevalent fungal pathogens[J].FEMS Microbiol Lett,2013,345(2):77-84.
[12] Navarathna DH,Das A,Morschhauser J,et al.Dur3 is the major urea transporter in Candida albicans and is co-regulated with the urea amidolyase Dur1,2[J].Microbiology,2011,57(Pt 1):270-279.
[13] Vylkova S,Carman AJ,Danhof HA,et al.The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH[J].MBio,2011,2(3):e00055-11.
[14] Lorenz MC,Bender JA,Fink GR.Transcriptional response of Candida albicans upon internalization by macrophages[J].Eukaryot Cell,2004,3(5):1076-1087.
[15] Ghosh S,Navarathna DH,Roberts DD,et al.Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7[J].Infect Immu,2009,77(4):1596-1605.
[16] Xu H,Nobile CJ,Dongari-Bagtzoglou A.Glucanase induces filamentation of the fungal pathogen Candida albicans[J].PLoS One,2013,8(5):e63736.
[17] Garcia MC,Lee JT,Ramsook CB,et al.A role for amyloid in cell aggregation and biofilm formation[J].PLoS One,2011,6(3):e17632.
[18] Murciano C,Moyes DL,Runglall M,et al.Evaluation of the role of Candida albicans agglutinin-like sequence(Als) proteins in human oral epithelial cell interactions[J].PLoS One,2012,7(3):e33362.
[19] Wachtler B,Wilson D,Haedicke K,et al.From attachment to damage:defined genes of Candida albicans mediate adhesion,invasion and damage during interaction with oral epithelial cells[J].PLoS One,2011,6(2):e17046.
[20] Naglik JR,Moyes DL,Wachtler B,et al.Candida albicans interactions with epithelial cells and mucosal immunity[J].Microbes Infect,2011,13(12-13):963-976.
[21] Sundstrom P,Cutler JE,Staab JF.Reevaluation of the role of HWP1 in systemic candidiasis by use of Candida albicans strains with selectable marker URA3 targeted to the ENO1 locus[J].Infect Immu,2002,70(6):3281-3283.
[22] Nobile CJ,Schneider HA,Nett JE,et al.Complementary adhesin function in C.albicans biofilm formation[J].Curr Biol,2008,18(14):1017-1024.
[23] Zhu W,Filler SG.Interactions of Candida albicans with epithelial cells[J].Cell Microbiol.2010;12(3):273-82.
[24] Sandini S,La Valle R,De Bernardis F,et al.The 65 kDa mannoprotein gene of Candida albicans encodes a putative beta-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity[J].Cell Microbiol,2007,9(5):1223-1238.
[25] De Bernardis F,Liu H,O'Mahony R,et al.Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis[J].J Infect Dis,2007,195(1):149-157.
[26] Dalle F,Wachtler B,L'Ollivier C,et al.Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes[J].Cell Microbiol,2010,12(2):248-271.
[27] Park H,Myers CL,Sheppard DC,et al.Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis[J].Cell Microbiol,2005,7(4):499-510.
[28] Villar CC,Zhao XR.Candida albicans induces early apoptosis followed by secondary necrosis in oral epithelial cells[J].Mol Oral Microbiol,2010,25(3):215-225.
[29] Phan QT,Myers CL,Fu Y,et al.Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells[J].PLoS Biol,2007,5(3):e64.
[30] Phan QT,Fratti RA,Prasadarao NV,et al.Filler SG.N-cadherin mediates endocytosis of Candida albicans by endothelial cells[J].J Biol Chem,2005,280(11):10455-10461.
[31] Sun JN,Solis NV,Phan QT,et al.Host cell invasion and virulence mediated by Candida albicans Ssa1[J].PLoS Pathog,2010,6(11):e1001181.
[32] Wachtler B,Citiulo F,Jablonowski N,et al.Candida albicans-epithelial interactions:dissecting the roles of active penetration,induced endocytosis and host factors on the infection process[J].PLoS One,2012,7(5):e36952.
[33] Naglik JR,Challacombe SJ,Hube B.Candida albicans secreted aspartyl proteinases in virulence and pathogenesis[J].Microbiol Mol Biol Rev,2003,67(3):400-428,table of contents.
[34] Zakikhany K,Naglik JR,Schmidt-Westhausen A,et al.In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination[J].Cell Microbiol,2007,9(12):2938-2954.
[35] Villar CC,Kashleva H,Nobile CJ,et al.Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation,mediated by transcription factor Rim101p and protease Sap5p[J].Infect Immu,2007,75(5):2126-2135.
[36] Borelli C,Ruge E,Lee JH,et al.X-ray structures of Sap1 and Sap5:structural comparison of the secreted aspartic proteinases from Candida albicans[J].Proteins,2008,72(4):1308-1319.
[37] Gropp K,Schild L,Schindler S,et al.The yeast Candida albicans evades human complement attack by secretion of aspartic proteases[J].Mol Immunol,2009,47(2-3):465-475.
[38] Niewerth M,Korting HC.Phospholipases of Candida albicans[J].Mycoses,2001,44(9-10):361-367.
[39] Yang P,Du H,Hoffman CS,et al.The phospholipase B homolog Plb1 is a mediator of osmotic stress response and of nutrient-dependent repression of sexual differentiation in the fission yeast Schizosaccharomyces pombe[J].Mol Genet Genomics,2003;269(1):116-125.
[40] Köohler GA,Brenot A,Haas-Stapleton E,et al.Phospholipase A2 and phospholipase B activities in fungi[J].Biochim Biophys Acta,2006,1761(11):1391-1399.
[41] Paraje MG,Correa SG,Albesa I,et al.Lipase of Candida albicans induces activation of NADPH oxidase and L-arginine pathways on resting and activated macrophages[J].Biochem Biophys Res Commun,2009,390(2):263-268.
[42] Gacser A,Stehr F,Kroger C,et al.Lipase 8 affects the pathogenesis of Candida albicans[J].Infect Immun,2007,75(10):4710-4718.
[43] Fanning S,Mitchell AP.Fungal biofilms[J].PLoS Pathog,2012,8(4):e1002585.
[44] Finkel JS,Mitchell AP.Genetic control of Candida albicans biofilm development[J].Nat Rev Microbiol,2011,9(2):109-118.
[45] Uppuluri P,Chaturvedi AK,Srinivasan A,et al.Dispersion as an important step in the Candida albicans biofilm developmental cycle[J].PLoS Pathog,2010,6(3):e1000828.
[46] Robbins N,Uppuluri P,Nett J,et al.Hsp90 governs dispersion and drug resistance of fungal biofilms[J].PLoS Pathog,2011,7(9):e1002257.
[47] Nobile CJ,Fox EP,Nett JE,et al.A recently evolved transcriptional network controls biofilm development in Candida albicans[J].Cell,2012,148(1-2):126-138.
[48] Nobile CJ,Nett JE,Hernday AD,et al.Biofilm matrix regulation by Candida albicans Zap1[J].PLoS Biol,2009,7(6):e1000133.
[49] Taff HT,Nett JE,Zarnowski R,et al,Sanchez H,Cain MT,et al.A Candida biofilm-induced pathway for matrix glucan delivery:implications for drug resistance[J].PLoS Pathog,2012,8(8):e1002848.
[50] Xie Z,Thompson A,Sobue T,et al.Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing[J].J Infect Dis,2012,206(12):1936-1945.
[51] Missall TA,Lodge JK,McEwen JE.Mechanisms of resistance to oxidative and nitrosative stress:implications for fungal survival in mammalian hosts[J].Eukaryot Cell,2004,3(4):835-846.
[52] Lopes da Rosa J,Boyartchuk VL,Zhu LJ,et al.Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis[J].Proc Natl Acad Sci USA,2010,107(4):1594-1599.
[53] Frohner IE,Bourgeois C,Yatsyk K,et al.Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance[J].Mol Microbiol,2009,71(1):240-252.
[54] Shi QM,Wang YM,Zheng XD,et al.Critical role of DNA checkpoints in mediating genotoxic-stress-induced filamentous growth in Candida albicans[J].Mol Biol Cell,2007,18(3):815-826. |