[1] Bahnan W, Koussa J, Younes S, et al.Deletion of the Candida albicans PIR32 results in increased virulence, stress response, and upregulation of cell wall chitin deposition[J]. Mycopathologia, 2012, 174(2): 107-119. [2] Zhu W, Filler SG. Interactions of Candida albicans with epithelial cells[J]. Cell Microbiol, 2010, 12(3): 273-282. [3] de Groot PW, Bader O, de Boer AD, et al. Adhesins in human fungal pathogens: glue with plenty of stick[J]. Eukaryot Cell, 2013, 12(4): 470-481. [4] Calderone RA, Fonzi WA. Virulence factors of Candida albicans[J]. Trends Microbiol, 2001, 9(7): 327-335. [5] Gaur NK, Smith RL, Klotz SA, et al. Candida albicans and Saccharomyces cerevisiae expressing ALA1/ALS5 adhere to accessible threonine, serine, or alanine patches[J]. Cell Commun Adhes, 2002, 9(1): 45-57. [6] Murciano C, Moyes DL, Runglall M, et al. Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions[J]. PLoS One, 2012, 7(3): e33362. [7] Klotz SA, Gaur NK, Lake DF, et al. Degenerate peptide recognition by Candida albicans adhesins Als5p and Als1p[J]. Infect Immun, 2004, 72(4): 2029-2034. [8] Salgado PS, Yan R, Taylor JD, et al. Structural basis for the broad specificity to host-cell ligands by the pathogenic fungus Candida albicans[J]. Proc Natl Acad Sci U S A, 2011, 108(38): 15775-15779. [9] Donohue DS, Ielasi FS, Goossens KV, et al. The N-terminal part of Als1 protein from Candida albicans specifically binds fucose-containingglycans[J]. Mol Microbiol,2011, 80(6): 1667-1679. [10] Lipke PN, Garcia MC, Alsteens D, et al. Strengthening relationships: amyloids create adhesion nanodomains in yeasts[J]. Trends Microbiol, 2012, 20(2): 59-65. [11] Chan CX, Lipke PN. Role of force-sensitive amyloid-like interactions in fungal catch-bonding and biofilms[J]. Eukaryot Cell, 2014, doi: 10.1128/EC.00068-14. [12] Garcia-Sherman MC, Lysak N, Filonenko A, et al. Peptide detection of fungal functional amyloids in infected tissue[J]. PLoS One, 2014, 9(1): e86067. [13] Sundstrom P, Balish E, Allen CM, et al. Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice[J]. J Infect Dis, 2002, 185(4): 521-530. [14] Staab JF, Bradway SD, Fidel PL, et al. Adhesive and mammalian transglutaminase properties of the Candida albicans HWP1[J]. Science, 1999, 283(5407): 1535-1538. [15] Nobile CJ, Schneider HA, Nett JE, et al. Complementary adhesin function in C.albicans biofilm formation[J]. Curr Biol, 2008, 18(14): 1017-1024. [16] Ene IV, Bennett RJ. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans.[J]. Eukaryot Cell, 2009, 8(12): 1909-1913. [17] Monniot C, Boisrame A, Da Costa G, et al. Rbt1 protein domains analysis in Candida albicans brings insights into hyphal surface modifications and Rbt1 potential role during adhesion and biofilm formation[J]. PLoS One, 2013, 8(12): e82395. [18] Li F, Palecek SP. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions[J]. Microbiology, 2008, 154(Pt 4): 1193-1203. [19] Li F, Svarovsky MJ, Karlsson AJ, et al. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo[J]. Eukaryot Cell, 2007, 6(6): 931-939. [20] 商庆华,曹颖瑛,苗浩,等. 白念珠菌生物被膜的基因表达及相关基因研究进展[J]. 中国真菌学杂志,2012,7(2):125-128. [21] Egusa H, Nikawa H, Makihira S, et al. Intercellular adhesion molecule 1-dependent activation of interleukin 8 expression in Candida albicans-infected human gingival epithelial cells[J]. Infect Immun, 2005, 73(1): 622-626. [22] Munro CA, Bates S, Buurman ET, et al. Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence[J]. J Biol Chem, 2005, 280(2): 1051-1060. [23] Buurman ET, Westwater C, Hube B, et al. Molecular analysis of CaMnt1p, a mannosyl transferase important for adhesion and virulence of Candida albicans[J]. Proc Natl Acad Sci U S A, 1998, 95(13): 7670-7675. [24] Gaur NK, Klotz SA. Accessibility of the peptide backbone of protein ligands is a key specificity determinant in Candida albicans SRS adherence.[J]. Microbiology, 2004, 150(Pt 2): 277-284. [25] El-Kirat-Chatel S, Beaussart A, Alsteens D, et al. Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans[J]. Nanoscale, 2013, 5(3): 1105-1115. [26] Alsteens D, Ramsook CB, Lipke PN, et al. Unzipping a functional microbial amyloid[J]. ACS Nanom, 2012, 6(9): 7703-7711. [27] Ramsook CB, Tan C, Garca MC, et al. Yeast cell adhesion molecules have functional amyloid-forming sequences[J]. Eukaryot Cell, 2010, 9(3): 393-404. [28] Watts HJ, Cheah FS, Hube B, et al. Altered adherence in strains of Candida albicans harbouring null mutations in secreted aspartic paroteinase genes[J]. FEMS Microbiol Lett, 1998, 159(1): 129-135. [29] Consolaro ME, Gasparetto A, Svidzinski TI, et al. Effect of pepstatin A on the virulence factors of Candida albicans strains isolated from vaginal environment of patients in three different clinical conditions[J]. Mycopathologia, 2006, 162(2): 75-82. [30] Tsang CS, Hong I. HIV protease inhibitors differentially inhibit adhesion of Candida albicans to acrylic surfaces[J]. Mycoses,2010, 53(6): 488-494. [31] Mayahara M, Kataoka R, Arimoto T, et al. Effects of surface roughness and dimorphism on the adhesion of Candida albicans to the surface of resins: scanning electron microscope analyses of mode and number of adhesions[J]. J Investig Clin Dent, 2013, doi: 10.1111/jicd.12055. [32] 刘晓红,廖万清,胡惠民,等.白念珠菌与宿主细胞黏附机制的探讨[J].中国皮肤性病学杂志,1999,13(2):83-84. [33] Beaussart A, Alsteens D, El-Kirat-Chatel S, et al. Single-molecule imaging and functional analysis of Als adhesins and mannans during Candida albicans morphogenesis[J]. ACS Nano,2012, 6(12): 10950-10964. [34] Rodrigues AG, Mardh PA, Pina-Vaz C, et al. Germ tube formation changes surface hydrophobicity of Candida cells[J]. Infect Dis Obstet Gynecol, 1999, 7(5): 222-226. [35] Raut J, Rathod V, Karuppayil SM, et al. Cell surface hydrophobicity and adhesion: a study on fifty clinical isolates of Candida albicans[J]. Nihon Ishinkin Gakkai Zasshi, 2010, 51(3): 131-136. [36] Blanco MT, Sacristán B, Lucio L, et al. Cell surface hydrophobicity as an indicator of other virulence factors in Candida albicans[J]. Rev Iberoam Micol, 2010, 27(4): 195-199. [37] Bujdáková H, Paulovicová E, Paulovicová L, et al. Participation of the Candida albicans surface antigen in adhesion, the first phase of biofilm development[J]. FEMS Immunol Med Microbiol, 2010, 59(3): 485-492. [38] Chang HT, Tsai PW, Huang HH, et al. LL37 and hBD-3 elevate the β-1,3-exoglucanase activity of Candida albicans Xog1p, resulting in reduced fungal adhesion to plastic[J]. Biochem J,2012, 441(3): 963-970. [39] Sudjana AN, Carson CF, Carson KC, et al. Candida albicans adhesion to human epithelial cells and polystyrene and formation of biofilm is reduced by sub-inhibitory Melaleuca alternifolia (tea tree) essential oil[J]. Med Mycol, 2012, 50(8): 863-870. |