[1] 陈端, 单斌, 骈淮燕, 等. 医院真菌感染 1225 例分析[J]. 中华检验医学杂志, 2005, 28(4): 387-388. [2] Benjamin DK, Stoll BJ, Fanaroff AA, et al. Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months[J]. Pediatrics, 2006, 117(1): 84-92. [3] Bromuro C, Torosantucci A, Chiani P, et al. Interplay between protective and inhibitory antibodies dictates the outcome of experimentally disseminated candidiasis in recipients of a Candida albicans vaccine[J]. Infect Immun, 2002, 70(10): 5462-5470. [4] Pietrella D, Rachini A, Torosantucci A, et al. A β-glucan-conjugate vaccine and anti-β-glucan antibodies are effective against murine vaginal candidiasis as assessed by a nove in vivo imaging technique[J]. Vaccine, 2010, 28(7): 1717-1725. [5] Torosantucci A, Bromuro C, Chiani P, et al. A novel glyco-conjugate vaccine against fungal pathogens[J]. J Exp Med, 2005, 202(5): 597-606. [6] Ho MM, Bolgiano B, Corbel MJ. Assessment of the stability and immunogenicity of meningococcal oligosaccharide C-CRM197 conjugate vaccines[J]. Vaccine, 2000, 19(7): 716-725. [7] Read SM, Currie G, Bacic A. Analysis of the structural heterogeneity of laminarin by electrospray-ionisation-mass spectrometry[J]. Carbohydr Res, 1996, 281(2): 187-201. [8] Bromuro C, Romano M, Chiani P, et al. Beta-glucan-CRM197 conjugates as candidates antifungal vaccines[J]. Vaccine, 2010, 28(14): 2615-2623. [9] Rapaka RR, Goetzman ES, Zheng M, et al. Enhanced defense against Pneumocystis carinⅡ mediated by a novel dectin-1 receptor Fc fusion protein[J]. J Immunol, 2007, 178(6): 3702-3712. [10] Rachini A, Pietrella D, Lupo P, et al. An anti-β-glucan monoclonal antibody inhibits growth and capsule formation of Cryptococcus neoformans in vitro and exerts therapeutic, anticryptococcal activity in vivo[J]. Infect Immun, 2007, 75(11): 5085-5094. [11] Han Y, Cutler JE. Antibody response that protects against disseminated candidiasis[J]. Infect Immun, 1995, 63(7): 2714-2719. [12] Polonelli L, Magliani W, Conti S, et al. Therapeutic activity of an engineered synthetic killer antⅡdiotypic antibody fragment against experimental mucosal and systemic candidiasis[J]. Infect Immun, 2003, 71(11): 6205-6212. [13] Han Y, Ulrich MA, Cutler JE. Candida albicans Mannan Extract-Protein Conjugates Induce a Protective Immune Response against Experimental Candidiasis[J]. J Infect Dis, 1999, 179(6): 1477-1484. [14] Sevilla MJ, Robledo B, Rementeria A, et al. A fungicidal monoclonal antibody protects against murine invasive candidiasis[J]. Infect Immun, 2006, 74(5): 3042-3045. [15] Omaetxebarria M, Moragues M, Elguezabal N, et al. Antifungal and antitumor activities of a monoclonal antibody directed against a stress mannoprotein of Candida albicans[J]. Curr Mol Med, 2005, 5(4): 393-401. [16] Brena S, Cabezas-Olcoz J, Moragues MD, et al. Fungicidal monoclonal antibody C7 interferes with iron acquisition in Candida albicans[J]. Antimicrob Agents Chemother, 2011, 55(7): 3156-3163. [17] Xin H, Cutler JE. Vaccine and monoclonal antibody that enhance mouse resistance to candidiasis[J]. Clin Vaccine Immunol, 2011, 18(10): 1656-1667. [18] Segal E, Sandovsky-Losica H. Experimental vaccination with Candida albicans ribosomes in cyclophosphamide-treated animals[J]. Sabouraudia, 1981, 19(4): 267-273. [19] Levy R, Segal E, Eylan E. Detection of antibodies against Candida albicans ribosomes by the enzyme linked immunosorbent assay[J]. Mycopathologia, 1984, 87(3): 167-170. [20] Eckstein M, Barenholz Y, Bar L, et al. Liposomes containing Candida albicans ribosomes as a prophylactic vaccine against disseminated candidiasis in mice[J]. Vaccine, 1997, 15(2): 220-224. [21] Levy D, Bohbot J, Catalan F, et al. Phase Ⅱ study of D. 651, an oral vaccine designed to prevent recurrences of vulvovaginal candidiasis[J]. Vaccine, 1989, 7(4): 337-340. [22] Zhang L, Ma J, Li Y, et al. 15-Hydroxyeicosatetraenoic acid (15-HETE) protects pulmonary artery smooth muscle cells against apoptosis via HSP90[J]. Life Sci, 2010, 87(7): 223-231. [23] Fukuizumi T, Nagamatsu H, Kojo T, et al. Induction of salivary antibodies to inhibit Candida albicans adherence to human epithelial cells by tonsillar immunization in rabbits[J]. FEMS Immunol Med Microbiol, 2006, 47(3): 398-404. [24] Matthews R, Burnie J. Human recombinant antibody to HSP90: a natural partner in combination therapy. Curr Mol Med. 2005, 5: 403-411. [25] Wang G, Sun M, Fang J, et al. Protective immune responses against systemic candidiasis mediated by phage-displayed specific epitope of Candida albicans heat shock protein 90 in C57BL/6J mice[J]. Vaccine, 2006, 24(35): 6065-6073. [26] Hodgetts S, Nooney L, Al-Akeel R, et al. Efungumab and caspofungin: pre-clinical data supporting synergy[J]. J Antimicrob Chemother, 2008, 61(5): 1132-1139. [27] Fu Y, Ibrahim AS, Sheppard DC, et al. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway[J]. Mol Microbiol, 2002, 44(1): 61-72. [28] Spellberg BJ, Ibrahim AS, Avanesian V, et al. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis[J]. J Infect Dis, 2006, 194(2): 256-260. [29] Ibrahim AS, Spellberg BJ, Avanesian V, et al. The anti-Candida vaccine based on the recombinant N-terminal domain of Als1p is broadly active against disseminated candidiasis[J]. Infect Immun, 2006, 74(5): 3039-3041. [30] Spellberg B, Ibrahim AS, Lin L, et al. Antibody titer threshold predicts anti-candidal vaccine efficacy even though the mechanism of protection is induction of cell-mediated immunity[J]. J Infect Dis, 2008, 197(7): 967-971. [31] Fernández-Arenas E, Molero G, Nombela C, et al. Low virulent strains of Candida albicans: unravelling the antigens for a future vaccine[J]. Proteomics, 2004, 4(10): 3007-3020. [32] Martínez-López R, Nombela C, Diez-Orejas R, et al. Immunoproteomic analysis of the protective response obtained from vaccination with Candida albicans ecm33 cell wall mutant in mice[J]. Proteomics, 2008, 8(13): 2651-2664. [33] Saville SP, Lazzell AL, Chaturvedi AK, et al. Efficacy of a genetically engineered Candida albicans tet-NRG1 strain as an experimental live attenuated vaccine against hematogenously disseminated candidiasis [J]. Clin Vaccine Immunol, 2009, 16(3): 430-432. [34] Tavares D, Ferreira P, Arala-Chaves M. Increased resistance in BALB/c mice to reinfection with Candida albicans is due to immunoneutralization of a virulence-associated immunomodulatory protein [J]. Microbiology, 2003, 149(2): 333-339. [35] De Bernardis F, Boccanera M, Adriani D, et al. Intravaginal and intranasal immunizations are equally effective in inducing vaginal antibodies and conferring protection against vaginal candidiasis [J]. Infect Immun, 2002, 70(5): 2725-2729. [36] Vilanova M, Teixeira L, Caramalho Í, et al. Protection against systemic candidiasis in mice immunized with secreted aspartic proteinase 2 [J]. Immunology, 2004, 111(3): 334-342. [37] Sandini S, La Valle R, Deaglio S, et al. A highly immunogenic recombinant and truncated protein of the secreted aspartic proteases family (rSap2t) of Candida albicans as a mucosal anticandidal vaccine [J]. FEMS Immunol Med Microbiol, 2011, 62(2): 215-224. [38] Ibrahim E-SM, Rahman A, Isoda R, et al. In vitro and in vivo effectiveness of egg yolk antibody against Candida albicans (anti-CA IgY) [J]. Vaccine, 2008, 26(17): 2073-2080. [39] Wang X, Fan B, Liu L, et al. In vitro inhibition of oral Candida albicans by chicken egg yolk antibody (IgY) [J]. Mycopathologia, 2008, 165(6): 381-387. [40] Fujibayashi T, Nakamura M, Tominaga A, et al. Effects of IgY against Candida albicans and Candida spp. adherence and biofilm formation [J]. Jpn J Infect Dis, 2009, 62(5): 337-342. |