[1] AkinsR A. An update on antifungal targets and mechanisms of resistance in Candida albicans[J]. Med Mycol, 2005,43(4): 285-318. [2] Morschhauser J.The genetic basis of fluconazole resistance development in Candida albicans[J].Biochim Biophys Acta, 2002,1587(2-3):240-248. [3] Guinea J, Sanchez-Somolinos M, Cuevas O, et al. Fluconazole resistance mechanisms in Candida krusei: the contribution of efflux-pumps[J].Med Mycol, 2006,44(6):575-578. [4] Mansfield BE, Oltean HN, Oliver BG, et al. Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi[J]. PLoS Pathog, 2010,6(9): e1001126. [5] Chau AS, Gurnani M, Hawkinson R, et al. Inactivation of sterol △5,6-desaturase attenuates virulence in Candida albicans[J]. Antimicrob Agents Chemotherapy,2005,49 (9):3646-3651. [6] Coste A,Turner V, Ischer F, et al.A mutationin Taclp,a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans[J].Genetics, 2006,172(4):2139-2156. [7] Dunkel N, Blass J, Rogers PD, Morschhäuser J. Mutations in the multidrug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains[J]. Mol Microbiol, 2008, 69(4): 827-840. [8] Dunkel N, Liu TT, Barker KS, et al. A Gain-of-Function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate[J]. Eukaryotic Cell, 2008, 7(7):1180-1190. [9] Znaidi S, Barker KS, Weber S, et al. Identification of the Candida albicans Cap1p Regulon[J]. Eukaryotic Cell, 2009, 8(6):806-820. [10] Schubert S, Barker KS, Znaidi S, et al. Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans[J]. Antimicrob Agents Chemother, 2011, 55(5):2212-2223. [11] Coste AT, Ramsdale M, Ischer F, et al. Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleiotropic drug resistance in Saccharomyces cerevisiae[J].Microbiology, 2008, 154(5):1491-1501. [12] Plaine A, Walker L, Da Costa G, et al. Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity[J]. Fungal Genet Biol, 2008,45 (10):1404-1414. [13] Lee KK, MacCallum DM, Jacobsen MD, et al. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo[J]. Antimicrob Agents Chemother, 2012,56(1):208-217. [14] Ene IV, Adya AK, Wehmeier S, et al. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen[J]. Cell Microbiol. 2012,14(9):1319-1335. [15] Santos M, Larrinoa IF.Functional characterization of the Candida albicans CRZ1 gene encoding a calcineurin-regulated transcription factor[J].Current Genetics,2005,48 (2):88-100. [16] Jia XM, Ma ZP, Jia Y, Gao PH, et al. RTA2, a novel gene involved in azole resistance in Candida albicans[J]. Biochem Biophys Res Commun.,2008, 373(4):631-636. [17] Jia XM, Wang Y, Jia Y, et al. RTA2 is involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in Candida albicans[J].Cell Mol Life Sci., 2009, 66(1):122-134. [18] Jia Y, Tang RJ, Wang L, Zhang X, Wang Y, et al. Calcium-activated-calcineurin reduces the in vitro and in vivo sensitivity of fluconazole to Candida albicans via Rta2p[J]. PLoS ONE, 2012, 7(10): e48369. [19] Cowen LE, Carpenter AE, Matangkasombut O, et al.Genetic architecture of Hsp90-dependent drug resistance[J]. Eukaryot Cell, 2006,5(12):2184 -2188. [20] Cowen LE, Lindquist S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi[J]. Science 2005, 309(5744):2185-2189. [21] Singh SD, Robbins N, Zaas AK, et al. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog, 2009, 5(7): e1000532. [22] Shapiro RS, Uppuluri P, Zaas AK, et al. Hsp90 Orchestrates Temperature-Dependent Candida albicans Morphogenesis via Ras1-PKA Signaling[J].Current Biology, 2009,19(8):621-629. [23] Robbins N, Leach MD, Cowen LE. Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance[J]. Cell Reports, 2012, 2(4): 878-888. [24] Chandra J, Kuhn DM, Mukherjee PK, et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance[J]. J Bacteriol, 2001, 183(8):5385-5394. [25] Mukherjee PK, Chandra J. Candida biofilm resistance.[J]. 2004, 7(4-5):301-309. [26] Bink A, Vandenbosch D, Coenye T, et al. Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole[J]. Antimicrob Agents Chemother,2011, 55(9):4033-4037. [27] Seneviratne CJ, Jin L, Samaranayake LP. Biofilm lifestyle of Candida: a mini review[J]. Oral Dis, 2008, 14 (7):582-590. [28] Nett J, Lincoln L, Marchillo K, et al. Putative Role of β-1,3 Glucans in Candida albicans Biofilm Resistance[J]. Antimicrob Agents Chemother, 2007, 51(2):510-520. [29] Nett JE, Crawford K, Marchillo K, et al. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene[J]. Antimicrob Agents Chemother,2010,54(8):3505-3508. [30] Bink A, Govaert G,Vandenbosch D, et al. Transcription factor Efg1 contributes to the tolerance of Candida albicans biofilms against antifungal agents in vitro and in vivo[J]. J Med Microbiol,2012, 61(6):813-819. |