[1] ZHAO Y, LIN X. Cryptococcus neoformans: Sex, morphogenesis, and virulence[J]. Infect Genet Evol, 2021,89: 104731.DOI: 10.1016/j.meegid.2021.104731. [2] CHOW B W, GU C. The molecular constituents of the blood-brain barrier[J]. Trends Neurosci,2015,38(10): 598-608. [3] PULZOVA L, BHIDE M R, ANDREJ K. Pathogen translocation across the blood-brain barrier[J]. FEMS Immunol Med Microbiol,2009, 57(3): 203-213. [4] FANG W, FA Z Z, XIE Q, et al. Complex roles of annexin A2 in host blood-brain barrier invasion by Cryptococcus neoformans[J]. CNS Neurosci Ther,2017,23(4): 291-300. [5] SHETTY P, BARGALE A, PATIL B R, et al. Cell surface interaction of annexin A2 and galectin-3 modulates epidermal growth factor receptor signaling in Her-2 negative breast cancer cells[J]. Mol Cell Biochem, 2016,411(1-2): 221-233. [6] GUPTA G P, NGUYEN D X, CHIANG A C, et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis[J]. Nature, 2007,446(7137): 765-770. [7] RIESE D J 2ND, CULLUM R L. Epiregulin: roles in normal physiology and cancer[J]. Semin Cell Dev Biol,2014,28: 49-56.DOI: 10.1016/j.semcdb.2014.03.005. [8] PARK B J, WANNEMUEHLER K A, MARSTON B J, et al. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS[J]. AIDS,2009,23(4): 525-530. [9] CRAWFORD C J, CORDERO R, GUAZZELLI L, et al. Exploring Cryptococcus neoformans capsule structure and assembly with a hydroxylamine-armed fluorescent probe[J]. J Biol Chem,2020,295(13): 4327-4340. [10] TOPLIS B, BOSCH C, SCHWARTZ I S, et al. The virulence factor urease and its unexplored role in the metabolism of Cryptococcus neoformans[J]. FEMS Yeast Res, 2020,20(4):foaa031. [11] MARUVADA R, ZHU L, PEARCE D, et al. Cryptococcus neoformans phospholipase B1 activates host cell Rac1 for traversal across the blood-brain barrier[J]. Cell Microbiol,2012,14(10): 1544-1553. [12] HARADA M, KAMIMURA D, ARIMA Y, et al. Temporal expression of growth factors triggered by epiregulin regulates inflammation development[J]. J Immunol,2015, 194(3): 1039-1046. [13] DRAPER B K, KOMURASAKI T, DAVIDSON M K, et al. Epiregulin is more potent than EGF or TGFalpha in promoting in vitro wound closure due to enhanced ERK/MAPK activation[J]. J Cell Biochem, 2003, 89(6): 1126-1137. [14] TAKAHASHI M, HAYASHI K, YOSHIDA K, et al. Epiregulin as a major autocrine/paracrine factor released from ERK- and p38MAPK-activated vascular smooth muscle cells[J]. Circulation,2003,108(20): 2524-2529. [15] CAO Y, SHI R, YANG H, et al. Epiregulin promotes osteogenic differentiation and inhibits neurogenic trans-differentiation of adipose-derived mesenchymal stem cells via MAPKs pathway[J]. Cell Biol Int,2020,44(4): 1046-1058. [16] 孟云芳, 法振宗, 方伟,等. 隐球菌感染体外血脑屏障模型的构建与应用[J]. 中国真菌学杂志, 2015, 10(2): 92-95. [17] VERMA V, KHOURY S, PARISIEN M, et al. The dichotomous role of epiregulin in pain[J]. Pain,2020,161(5): 1052-1064. [18] SUNAGA N, KAIRA K. Epiregulin as a therapeutic target in non-small-cell lung cancer[J]. Lung Cancer (Auckl),2015,6: 91-98. DOI:10.2147/LCTT.S60427. [19] SEGOVIA-MENDOZA M, DÍAZ L, GONZÁLEZ-GONZÁLEZ M E, et al. Calcitriol and its analogues enhance the antiproliferative activity of gefitinib in breast cancer cells[J]. J Steroid Biochem Mol Biol,2015,148: 122-131. DOI:10.1016/j.jsbmb.2014.12.006. |