[1] OREN I,PAUL M.Up to date epidemiology, diagnosis and management of invasive fungal infections[J]. Clin Microbiol Infect, 2014,20(Suppl 6): 1-4. [2] RUHNKE M, BEHRE G, BUCHHEIDT D,et al. Diagnosis of invasive fungal diseases in haematology and oncology: 2018 update of the recommendations of the infectious diseases working party of the German Society for Hematology and Medical Oncology (AGIHO) [J]. Mycoses, 2018,61(11): 796-813. [3] ARIAS S, DENIS O, MONTESINOS I,et al. Epidemiology and mortality of candidemia both related and unrelated to the central venous catheter: a retrospective cohort study[J]. Eur J Clin Microbiol Infect Dis, 2017,36(3): 501-507. [4] RUIZ-RUIGÓMEZ M, DUEÑAS C, HERNANDEZ C,et al. Clinical predictors of candidemia in medical non-neutropenic, non-ICU patients. The CaMed score[J]. Int J Clin Pract, 2018,72(12): e13275. [5] ENOCH, D A,YANG H,et al., The changing epidemiology of invasive fungal infections[J]. Methods Mol Biol, 2017, 1508: 17-65. DOI:10.1007/978-1-4939-6515-1_2. [6] CLSI. Performance Standards for antifungal susceptibility testing of yeasts. 2nd ed. CLSI supplement M60[S]. Wayne, PA: Clinical and Laboratory Standards Institute,2020. [7] CLSI.Epidemiological cutoff values for antifungal susceptibility testing M59[S]. Wayne, PA: Clinical and Laboratory Standards Institute,2018. [8] PAPPAS P G, LIONAKIS M S, ARENDRUP M C,et al. Invasive candidiasis[J]. Nat Rev Dis Primers, 2018,4: 18026.DOI: 10.1038/nrdp.2018.26. [9] PUIG-ASENSIO M, PADILLA B, GARNACHO-MONTERO J,et al. Epidemiology and predictive factors for early and late mortality in Candida bloodstream infections: a population-based surveillance in Spain[J]. Clin Microbiol Infect, 2014,20(4): O245-254. [10] KATO H, YOSHIMURA Y, SUIDO Y,et al. Prevalence of, and risk factors for, hematogenous fungal endophthalmitis in patients with Candida bloodstream infection[J]. Infection, 2018,46(5): 635-640. [11] 段思蒙, 肖盟,黄晶晶,等.2012年度侵袭性真菌耐药监测网(CHIF-NET)侵袭性酵母菌感染的分布特征[J]. 中国真菌学杂志, 2021,16(4):234-242. [12] ARENDRUP, M C. Candida and candidaemia. Susceptibility and epidemiology[J]. Dan Med J, 2013,60(11): B4698. [13] PFALLER M A, DIEKEMA D J, TURNIDGE J,et al.Twenty years of the SENTRY antifungal surveillance program: Results for Candida species from 1997-2016[J]. Open Forum Infect Dis, 2019,6(Suppl 1):S79-S94. [14] YILMAZ-CIFTDOǦAN D, KARA-AKSAY A, ERBAŞ G,et al. Epidemiology of candidemia in children over 7 years in a medical center in Turkey[J]. Microbiol Spectr, 2021,9(2): e0045321. [15] LARKIN, E L, DHARMAIAH S, GHANNOUM M A. Biofilms and beyond: expanding echinocandin utility[J]. J Antimicrob Chemother, 2018,73(Suppl 1): i73-i81. [16] 何重远,周秀珍,刘建华,等.儿童176株假丝酵母菌血流感染的临床特征和耐药性分析[J]. 中国小儿急救医学, 2016,23(7): 471-475. [17] 曹云,宋少婷,李帅, 等.念珠菌血流感染临床与实验室特点分析[J]. 中国真菌学杂志, 2019, 14(1): 7-10. [18] VINCENT J L, RELLO J, MARSHALL J,et al. International study of the prevalence and outcomes of infection in intensive care units[J]. Jama, 2009,302(21): 2323-2329. [19] LEE Y, PUUMALA E, ROBBINS N,et al. Antifungal drug resistance: Molecular mechanisms in Candida albicans and beyond[J]. Chem Rev, 2021,121(6): 3390-3411. [20] ANDES D, FORREST A, LEPAK A,et al. Impact of antimicrobial dosing regimen on evolution of drug resistance in vivo: fluconazole and Candida albicans[J]. Antimicrob Agents Chemother, 2006,50(7): 2374-2383. [21] FRANZ R, KELLY S L, LAMB D C,et al.Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains[J]. Antimicrob Agents Chemother, 1998,42(12): 3065-3072. [22] XIAO M, SUN Z Y, KANG M.,et al. Five-year national surveillance of invasive candidiasis: Species distribution and azole susceptibility from the China Hospital Invasive Fungal Surveillance Net (CHIF-NET) Study[J]. J Clin Microbiol, 2018, 56(7): e00577-18. [23] FAN X, XIAO M, LIAO K,et al. Notable increasing trend in azole non-susceptible Candida tropicalis causing invasive candidiasis in China (August 2009 to July 2014): Molecular epidemiology and clinical azole consumption[J]. Front Microbiol, 2017,8: 464.DOI: 10.3389/fmicb.2017.00464. [24] MORIO F, JENSEN R H, LE PAPE P, et al. Molecular basis of antifungal drug resistance in yeasts[J]. Int J Antimicrob Agents, 2017,50(5): 599-606. [25] CHOI M J, WON E J, SHIN J H,et al. Resistance mechanisms and cinical features of fluconazole-nonsusceptible Candida tropicalis isolates compared with fluconazole-less-susceptible isolates[J]. Antimicrob Agents Chemother, 2016,60(6): 3653-3661. [26] FAN X, XIAO M, ZHANG D,et al. Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China[J]. Clin Microbiol Infect, 2019,25(7): 885-891. [27] IYER K R, REVIE N M, FU C,et al. Treatment strategies for cryptococcal infection: challenges, advances and future outlook[J]. Nat Rev Microbiol, 2021,19(7): 454-466. [28] ESPINEL-INGROFF A, ALLER A I, CANTON E,et al. Cryptococcus neoformans-Cryptococcus gattii species complex: An international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole[J]. Antimicrob Agents Chemother, 2012,56(11): 5898-5906. [29] CÓRDOBA S, ISLA M G, SZUSZ W,et al. Susceptibility profile and epidemiological cut-off values of Cryptococcus neoformans species complex from Argentina[J]. Mycoses, 2016,59(6): 351-356. |