中国真菌学杂志 2023, Vol. 18 Issue (2): 188-192.
综述 上一篇
李波, 杨静
收稿日期:
2022-05-11
出版日期:
2023-04-28
发布日期:
2023-05-26
通讯作者:
杨静,E-mail:yang_jing@sxmu.edu.cn
E-mail:yang_jing@sxmu.edu.cn
作者简介:
李波,女(汉族),硕士研究生在读.E-mail:547556763@qq.com
Received:
2022-05-11
Online:
2023-04-28
Published:
2023-05-26
中图分类号:
李波, 杨静. 环境及遗传调控机制对白念珠菌菌丝形成过程调控的研究进展[J]. 中国真菌学杂志, 2023, 18(2): 188-192.
[1] TALAPKO J, JUZBAŠIĆ M, MATIJEVIĆ T, et al. Candida albicans-the virulence factors and clinical manifestations of infection[J]. J Fungi (Basel), 2021, 7(2):79. [2] ROMO J A, KUMAMOTO C A. On commensalism of Candida[J]. J Fungi (Basel), 2020, 6(1):16. [3] MAYER F L, WILSON D, HUBE B. Candida albicans pathogenicity mechanisms[J]. Virulence, 2013, 4(2):119-128. [4] NOBILE C J, JOHNSON A D. Candida albicans biofilms and human disease[J]. Annu Rev Microbiol, 2015, 69:71-92.DOI:10.1146/annurev-micro-091014-104330. [5] SAGHROUNI F, BEN ABDELJELIL J, BOUKADIDA J, et al. Molecular methods for strain typing of Candida albicans:a review[J]. J Appl Microbiol, 2013, 114(6):1559-1574. [6] THOMSON D D, WEHMEIER S, BYFIELD F J, et al. Contact-induced apical asymmetry drives the thigmotropic responses of Candida albicans hyphae[J]. Cell Microbiol, 2015, 17(3):342-354. [7] MUKAREMERA L, LEE K K, MORA-MONTES H M, et al. Candida albicans yeast, pseudohyphal, and hyphal morphogenesis differentially affects immune recognition[J]. Front Immunol, 2017, 8:629.DOI:10.3389/fimmu.2017.00629. [8] THOMPSON DELMA S, CARLISLE PATRICIA L, KADOSH D. Coevolution of morphology and virulence in candida species[J]. Eukaryotic Cell, 2011, 10(9):1173-1182. [9] UWAMAHORO N, VERMA-GAUR J, SHEN H H, et al. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages[J]. mBio, 2014, 5(2):e00003-e14. [10] CALDERONE R A, FONZI W A. Virulence factors of Candida albicans[J]. Trends Microbiol, 2001, 9(7):327-335. [11] GREEN L, DOLEN W K. Chronic candidiasis in children[J]. Curr Allergy Asthma Rep, 2017, 17(5):31. [12] GRINCEVIČIENĖŠ, DONDERS G G. Comment on treatment for recurrent vulvovaginal candidiasis[J]. Am J Obstet Gynecol, 2017, 216(4):426-427. [13] ANDES D R, SAFDAR N, BADDLEY J W, et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis:a patient-level quantitative review of randomized trials[J]. Clin Infect Dis, 2012, 54(8):1110-1122. [14] ANTINORI S, MILAZZO L, SOLLIMA S, et al. Candidemia and invasive candidiasis in adults:A narrative review[J]. Eur J Intern Med, 2016, 34:21-28.DOI:10.1016/j.ejim.2016.06.029. [15] NOBLE S M, GIANETTI B A, WITCHLEY J N. Candida albicans cell-type switching and functional plasticity in the mammalian host[J]. Nat Rev Microbiol, 2017, 15(2):96-108. [16] CHEN H, ZHOU X, REN B, et al. The regulation of hyphae growth in Candida albicans[J]. Virulence, 2020, 11(1):337-348. [17] SUDBERY P E. The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization[J]. Mol Microbiol, 2001, 41(1):19-31. [18] VILLA S, HAMIDEH M, WEINSTOCK A, et al. Transcriptional control of hyphal morphogenesis in Candida albicans[J]. FEMS Yeast Res, 2020, 20(1):foaa005. [19] KORNITZER D. Regulation of Candida albicans hyphal morphogenesis by endogenous signals[J]. J Fungi (Basel), 2019, 5(1):21. [20] KOH A Y, KÖHLER J R, COGGSHALL K T, et al. Mucosal damage and neutropenia are required for Candida albicans dissemination[J]. PLoS Pathog, 2008, 4(2):e35. [21] GHOSH S, NAVARATHNA D H, ROBERTS D D, et al. Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7[J]. Infect Immun, 2009, 77(4):1596-605. [22] MARCIL A, HARCUS D, THOMAS D Y, et al. Candida albicans killing by RAW 264.7 mouse macrophage cells:effects of Candida genotype, infection ratios, and gamma interferon treatment[J]. Infect Immun, 2002, 70(11):6319-6329. [23] MCKENZIE C G, KOSER U, LEWIS L E, et al. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages[J]. Infect Immun, 2010, 78(4):1650-1658. [24] NOBILE C J, JOHNSON A D. Candida albicans biofilms and human disease[J]. Annu Rev Microbiol, 2015, 69:71-92.DOI:10.1146/annurev-micro-091014-104330. [25] ZHENG X, WANG Y, WANG Y. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis[J]. Embo J, 2004, 23(8):1845-1856. [26] SAVILLE S P, LAZZELL A L, MONTEAGUDO C, et al. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection[J]. Eukaryot Cell, 2003, 2(5):1053-1060. [27] SAVILLE S P, LAZZELL A L, BRYANT A P, et al. Inhibition of filamentation can be used to treat disseminated candidiasis[J]. Antimicrob Agents Chemother, 2006, 50(10):3312-3316. [28] O'MEARA T R, VERI A O, KETELA T, et al. Global analysis of fungal morphology exposes mechanisms of host cell escape[J]. Nat Commun, 2015, 6:6741.DOI:10.1038/ncomms7741. [29] NOBLE S M, FRENCH S, KOHN L A, et al. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity[J]. Nat Genet, 2010, 42(7):590-598. [30] VILA T, ROMO J A, PIERCE C G, et al. Targeting Candida albicans filamentation for antifungal drug development[J]. Virulence, 2017, 8(2):150-158. [31] FARIA D R,SAKITA K M,AMIMOTO-GUNTHER L S,et al. Cell damage caused by vaginal Candida albicans isolates from women with different symptomatologies[J]. J Med Microbiol,2017,66(8):1225-1228. [32] HUANG G, HUANG Q, WEI Y, et al. Multiple roles and diverse regulation of the Ras/cAMP/protein kinase A pathway in Candida albicans[J]. Mol Microbiol, 2019, 111(1):6-16. [33] BOCKMUHL D P,ERNST J F. A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans[J]. Genetics,2001,157(4):1523-1530. [34] DE OLIVE IRA J R, FIGUEIRA L W, SPER F L, et al. Thymus vulgaris L. and thymol assist murine macrophages (RAW 264.7) in the control of in vitro infections by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans[J]. Immunol Res,2017, 65(4):932-943. [35] 逄金花,唐建国,童译庆,等.白念珠菌酵母相-菌丝相形态转换机制的研究进展[J].现代生物医学进展,2017,(35):6950-6954. [36] HUANG G, WANG H, CHOU S, et al. Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans[J]. Proc Natl Acad Sci U S A, 2006, 103(34):12813-12818. [37] CAO F, LANE S, RANIGA P P, et al. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans[J]. Mol Biol Cell, 2006, 17(1):295-307. [38] BOCKMVHL D P, ERNST J F. A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans[J]. Genetics, 2001, 157(4):1523-1530. [39] WANG Y. Fungal adenylyl cyclase acts as a signal sensor and integrator and plays a central role in interaction with bacteria[J]. PLoS Pathog, 2013, 9(10):e1003612. [40] CHOW E W L, PANG L M, WANG Y. From Jekyll to Hyde:The yeast-hyphal transition of Candida albicans[J]. Pathogens, 2021, 10(7):859. [41] MONGE R A, ROMÁN E, NOMBELA C, et al. The MAP kinase signal transduction network in Candida albicans[J]. Microbiology (Reading), 2006, 152(Pt 4):905-912. [42] LEBERER E, HARCUS D, BROADBENT I D, et al. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans[J]. Proc Natl Acad Sci U S A,1996,93(23):13217-13222. [43] RAMON A M, FONZI W A. Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC[J]. Eukaryot Cell,2003,2(4):718-728. [44] DU H,HUANG G. Environmental pH adaption and morphological transitions in Candida albicans[J].Curr Genet,2016,62(2):283-286. [45] KHAN F, BAMUNUARACHCHI N I, TABASSUM N, et al. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds[J]. Biofouling, 2021, 37(6):626-655. [46] BARWELL KAREN J, BOYSEN JACOB H, XU W, et al. Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans[J]. Eukaryotic Cell, 2005, 4(5):890-899. [47] DAVIS D, WILSON R B, MITCHELL AARON P. RIM101-dependent and-independent pathways govern pH responses in Candida albicans[J]. Mol Cell Biol, 2000, 20(3):971-978. [48] DAVIS D A. How human pathogenic fungi sense and adapt to pH:the link to virulence[J]. Curr Opin Microbiol, 2009, 12(4):365-370. [49] VYLKOVA S, CARMAN A J, DANHOF H A, et al. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH[J]. mBio, 2011, 2(3):e00055-11. [50] VESELY E M, WILLIAMS R B, KONOPKA J B, et al. N-acetylglucosamine metabolism promotes survival of Candida albicans in the phagosome[J]. mSphere, 2017, 2(5):e00357-17. [51] LOPES J P, STYLIANOU M, BACKMAN E, et al. Evasion of immune surveillance in low oxygen environments enhances Candida albicans virulence[J]. mBio, 2018, 9(6):e02120-18. [52] DESAI P R, VAN WIJLICK L, KURTZ D, et al. Hypoxia and temperature regulated morphogenesis in Candida albicans[J]. PLoS Genet, 2015, 11(8):e1005447. [53] SAPUTO S, KUMAR A, KRYSAN D J. Efg1 directly regulates ACE2 expression to mediate cross talk between the cAMP/PKA and RAM pathways during Candida albicans morphogenesis[J]. Eukaryot Cell, 2014, 13(9):1169-1180. [54] NASEEM S, KONOPKA J B. N-acetylglucosamine regulates virulence properties in microbial pathogens[J]. PLoS Pathog, 2015, 11(7):e1004947. [55] SUDBERY P E. Growth of Candida albicans hyphae[J]. Nat Rev Microbiol, 2011, 9(10):737-748. [56] SU C, YU J, LU Y. Hyphal development in Candida albicans from different cell states[J]. Curr Genet, 2018, 64(6):1239-1243. [57] NOBLE S M, GIANETTI B A, WITCHLEY J N. Candida albicans cell-type switching and functional plasticity in the mammalian host[J]. Nat Rev Microbiol, 2017, 15(2):96-108. [58] VERI A O, MIAO Z, SHAPIRO R S, et al. Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space[J]. PLoS Genet, 2018, 14(3):e1007270. [59] SHAPIRO R S, UPPULURI P, ZAAS A K, et al. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling[J]. Curr Biol, 2009, 19(8):621-629. |
[1] | 巨金鑫, 冯文莉. HIV蛋白酶抑制剂的抗真菌作用及相关机制探讨[J]. 中国真菌学杂志, 2023, 18(3): 261-264. |
[2] | 李硕, 李小静. 白念珠菌在巨噬细胞逃逸途径的研究进展[J]. 中国真菌学杂志, 2023, 18(3): 270-272,281. |
[3] | 魏茹月, 冯文莉. 抗白念珠菌感染的协同作用机制研究进展[J]. 中国真菌学杂志, 2023, 18(2): 163-166,187. |
[4] | 王欣荣, 仲华, 鲁仁义, 韩蕾, 王彦. 微生物群影响宿主抗真菌感染免疫的研究进展[J]. 中国真菌学杂志, 2023, 18(1): 65-70. |
[5] | 郭慧阳, 王彤, 姜明, 胡惠萍. 生物源抑制白念珠菌活性物质的研究进展[J]. 中国真菌学杂志, 2023, 18(1): 80-85. |
[6] | 郝东杰, 钱亚奇, 李爱云. 白念珠菌脐静脉炎引发早产儿类白血病反应2例报道[J]. 中国真菌学杂志, 2022, 17(6): 490-494. |
[7] | 骆明芬, 黄欢, 李倩, 刘红芳, 席丽艳. 中国大陆慢性皮肤黏膜念珠菌病回顾性分析(1980—2020年)[J]. 中国真菌学杂志, 2022, 17(5): 368-372,376. |
[8] | 王晓娟, 秦玉璘, 沈春英, 杨其莲, 喻轶群, 曹永兵, 韩冰. 他汀类药物治疗真菌感染研究进展[J]. 中国真菌学杂志, 2022, 17(5): 408-413. |
[9] | 黄悦, 蔡良奇, 张子平, 程波. CHK1基因对白念珠菌体外超微结构及氟康唑最低抑菌浓度的影响[J]. 中国真菌学杂志, 2022, 17(4): 265-268,288. |
[10] | 刘佳存, 王瑞娜, 吕权真, 阎澜. 白念珠菌耐药机制研究进展[J]. 中国真菌学杂志, 2022, 17(4): 319-323. |
[11] | 杨成, 乔云龙, 厉荣玉, 熊延靖, 汤兴丽. 贝莱斯芽孢杆菌Y6抗菌肽抑制白念珠菌活性的研究[J]. 中国真菌学杂志, 2022, 17(3): 183-187,194. |
[12] | 刘映禄, 冯文莉. 白念珠菌中转录因子Cap1的研究进展[J]. 中国真菌学杂志, 2022, 17(3): 231-234. |
[13] | 张欠欠, 封小川, 张凯玄, 元航. 白念珠菌对临床常用抗真菌药物耐药机制研究进展[J]. 中国真菌学杂志, 2022, 17(3): 251-254. |
[14] | 胡婧, 李爱红, 冯金荣. 利用大蜡螟模型研究白念珠菌SUMO编码基因SMT3在致病性调控中的作用[J]. 中国真菌学杂志, 2022, 17(2): 103-108. |
[15] | 张露文, 冯文莉. 转录因子在白念珠菌自噬过程中的调控机制[J]. 中国真菌学杂志, 2022, 17(2): 158-162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||