[1] PARK B J, WANNEMUEHLER K A, MARSTON B J, et al. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS[J]. AIDS, 2009, 23(4):525-530. [2] RAJASINGHAM R, SMITH R M, PARK B J, et al. Global burden of disease of HIV-associated cryptococcal meningitis:an updated analysis[J]. Lancet Infect Dis,2017, 17(8):873-881. [3] HONG N, CHEN M, XU N, et al. Genotypic diversity and antifungal susceptibility of Cryptococcus neoformans isolates from paediatric patients in China[J]. Mycoses, 2019, 62(2):171-180. [4] IYER K R, REVIE N M, FU C, et al. Treatment strategies for cryptococcal infection:challenges, advances and future outlook[J]. Nature Reviews. Microbiology, 2021, 19(7):454-466. [5] DOMINGUEZ A A, LIM W A, QI L S. Beyond editing:repurposing CRISPR-Cas9 for precision genome regulation and interrogation[J]. Nat Rev Microbiol, 2016, 17(1):5-15. [6] WANG S, CHEN H, TANG X, et al. Molecular tools for gene manipulation in filamentous fungi[J]. Appl Microbiol Biotechnol, 2017, 101(22):8063-8075. [7] GOINS C L, GERIK K J, LODGE J K. Improvements to gene deletion in the fungal pathogen Cryptococcus neoformans:Absence of Ku proteins increases homologous recombination, and co-transformation of independent DNA molecules allows rapid complementation of deletion phenotypes[J]. Fungal Genet Biol, 2006, 43(8):531-544. [8] CHEN Y, TOFFALETTI D L, TENOR J L, et al. The Cryptococcus neoformans transcriptome at the site of human meningitis[J]. mBio, 2014, 5(1):e01087-13. [9] LIU O W, CHUN C D, CHOW E D, et al. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans[J]. Cell, 2008, 135(1):174-188. [10] MCCLELLAND C M, CHANG Y C, KWON-CHUNG K J. High frequency transformation of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens[J]. Fungal Genet Biol, 2005, 42(11):904-913. [11] DAVIDSON R C, CRUZ M C, SIA R A L, et al. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans[J]. Fungal Genet Biol, 2000, 29(1):38-48. [12] GORANOV A I, MADHANI H D. Functional profiling of human fungal pathogen genomes[J]. Cold Spring Harb Perspect Med, 2015, 5(3):a019596. [13] LIN L, CHEN S, ZHANG J, et al. Effect of CAP10 gene on immune response in mice infected with Cryptococcus neoformans[J]. J Mycol Med, 2021, 31(11):101160. [14] ZHAO Y, LIN J, FAN Y, et al. Life cycle of Cryptococcus neoformans[J]. Annu Rev Microbiol, 2019, 73(1):17-42. [15] LENGELER K B, COX G M, HEITMAN J. Serotype AD strains of Cryptococcus neoformans are diploid or aneuploid and are heterozygous at the ating-Type locus[J]. Infect Immun, 2001, 69(1):115-122. [16] KARKOWSKA-KULETA J, KOZIK A. Cell wall proteome of pathogenic fungi[J]. Acta Biochimica Polonica, 2015, 62(3):339-351. DOI:10.18388/abp.2015_1032. [17] LIN L, CHEN S, ZHANG J, et al. Cryptococcus neoformans CAP10gene regulates the immune response in mice[J]. J Mycol Med, 2021, 31(4):101160. [18] IDNURM A, BAILEY A M, CAIRNS T C, et al. A silver bullet in a golden age of functional genomics:the impact of Agrobacterium-mediated transformation of fungi[J]. Fungal Biol Biotechnol, 2017, 4:6. DOI:10.1186/s40694-017-0035-0. [19] WALTON F J, IDNURM A, HEITMAN J. Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans[J]. Molecular Microbiology, 2005, 57(5):1381-1396. [20] MOTAUNG T E. Cryptococcus neoformans mutant screening:a genome-scale's worth of function discovery[J]. Fungal Genet Biol, 2018, 32(3):181-203. [21] FU J, BROCKMAN N E, WICKES B L. Optimizing transformation frequency of Cryptococcus neoformans and Cryptococcus gattii using agrobacterium tumefaciens[J]. J Fungi (Basel), 2021, 7(7):520. [22] ZHANG P, LI C, HUO L, et al. Role of the fungus-specific flavin carrier Flc1 in antifungal resistance in the fungal pathogen Cryptococcus neoformans[J]. Med Mycol, 2019, 57(4):468-477. [23] LIN X, CHACKO N, WANG L, et al. Generation of stable mutants and targeted gene deletion strains in Cryptococcus neoformans through electroporation[J]. Med Mycol, 2015, 53(3):225-234. [24] DAVIDSON R C, CRUZ M C, SIA R A L, et al. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans[J]. Fungal Genet Biol, 2000, 29(1):38-48. [25] TERNS M P, TERNS R M. CRISPR-based adaptive immune systems[J]. Curr Opin Microbiol, 2011, 14(3):321-327. [26] SLEDZINSKI P, DABROWSKA M, NOWACZYK M, et al. Paving the way towards precise and safe CRISPR genome editing[J]. Biotechnol Adv, 2021, 49:107737. DOI:10.1016/j.biotechadv.2021.107737. [27] ARRAS S D M, CHUA S M H, WIZRAH M S I, et al. Targeted genome editing via CRISPR in the pathogen Cryptococcus neoformans[J]. PLoS ONE, 2016, 11(10):e0164322. [28] WANG Y, WEI D, ZHU X, et al. A 'suicide' CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans[J]. Sci Rep, 2016, 6:31145. [29] 王宇, 肖婷婷, 朱项阳, 等. 新型隐球酵母U6启动子的鉴定、克隆及功能验证[J]. 微生物学报, 2017, 57(2):197-208. [30] MANSOUR S L, THOMAS K R, CAPECCHI M R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells:a general strategy for targeting mutations to non-selectable genes[J]. Nature, 1988, 336(6197):348-352. [31] ZHANG P, WANG Y, LI C, et al. Simplified All-In-One CRISPR-Cas9 construction for efficient genome editing in Cryptococcus species[J]. J Fungi (Basel), 2021, 7(7):505. [32] LIN J, FAN Y, LIN X. Transformation of Cryptococcus neoformans by electroporation using a transient CRISPR-Cas9 expression (TRACE) system[J]. Fungal Genet Biol, 2020, 138:103364. DOI:10.1016/j.fgb.2020.103364. [33] WANG P. Two distinct approaches for CRISPR-Cas9-mediated gene editing in Cryptococcus neoformans and related species[J]. mSphere, 2018, 3(3):e00208-18. [34] GAO Y, ZHAO Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing[J]. J Integr Plant Biol, 2014, 56(4):343-349. [35] KOMOR A C, BADRAN A H, LIU D R. CRISPR-based technologies for the manipulation of eukaryotic genomes[J]. Cell, 2017, 168(1-2):20-36. [36] CAI G, LIN Z, SHI S. Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engineering in yeast[J]. Enzyme Microb Technol, 2022, 159:110056. DOI:10.1016/j.enzmictec.2022.110056. [37] HALDER V, PORTER C B M, CHAVEZ A, et al. Design, execution, and analysis of CRISPR-Cas9-based deletions and genetic interaction networks in the fungal pathogen Candida albicans[J]. Nat Protoc,2019, 14(3):955-975. DOI:10.1038/s41596-018-0122-6. [38] MARTON T, MAUFRAIS C, D'ENFERT C, et al. Use of CRISPR-Cas9 to target homologous recombination limits transformation-induced genomic changes in Candida albicans[J]. mSphere, 2020, 5(5):e00620-20. [39] NØDVIG C S, HOOF J B, KOGLE M E, et al. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli[J]. Fungal Genet Biol, 2018, 115:78-89. DOI:10.1016/j.fgb.2018.01.004. [40] FERNANDES C, DASILVA D, HARANAHALLI K, et al. The future of antifungal drug therapy:novel compounds and targets[J]. Antimicrob Agents Chemother, 2021,65(2):e01719-20. |