[1] PAULUSSEN C, HALLSWORTH J E, ÁLVAREZ-PÉREZ S, et al. Ecology of aspergillosis:insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species[J]. Microb Biotechnol, 2017, 10(2):296-322. [2] TISCHLER B Y, HOHL T M. Menacing mold:recent advances in Aspergillus pathogenesis and host defense[J]. J Mol Biol, 2019, 431(21):4229-4246. [3] JEANVOINE A, ROCCHI S, BELLANGER A P, et al. Azole-resistant Aspergillus fumigatus:A global phenomenon originating in the environment[J]?Med Mal Infect, 2020, 50(5):389-395. [4] BRANDÃO I S L, OLIVEIRA-MORAES H, SOUZA MOTTA C M, et al. Elastin increases biofilm and extracellular matrix production of Aspergillus fumigatus[J]. Braz J Microbiol, 2018, 49(3):675-682. [5] PERDONI F, SIGNORELLI P, CIRASOLA D, et al. Antifungal activity of Myriocin on clinically relevant Aspergillus fumigatus strains producing biofilm[J]. BMC Microbiol,2015,15:248.DOI:10.1186/s12866-015-0588-0. [6] FERNÁNDEZ DE ULLIVARRI M, ARBULU S, GARCIA-GUTIERREZ E, et al. Antifungal peptides as therapeutic agents[J]. Front Cell Infect Microbiol, 2020, 10:105. DOI:10.3389/fcimb.2020.00105. [7] BERMAN J, KRYSAN D J. Drug resistance and tolerance in fungi[J]. Nat Rev Microbiol, 2020, 18(6):319-331. [8] REICHHARDT C, STEVENS D A, CEGELSKI L. Fungal biofilm composition and opportunities in drug discovery[J]. Future Med Chem, 2016, 8(12):1455-1468. [9] LE MAUFF F, BAMFORD N C, ALNABELSEYA N, et al. Molecular mechanism of Aspergillus fumigatus biofilm disruption by fungal and bacterial glycoside hydrolases[J]. J Biol Chem, 2019, 294(28):10760-10772. [10] SALES-CAMPOS H, TONANI L, CARDOSO C R, et al. The immune interplay between the host and the pathogen in Aspergillus fumigatus lung infection[J]. Biomed Res Int, 2013, 2013:693023. DOI:10.1155/2013/693023 [11] ROILIDES E, SIMITSOPOULOU M, KATRAGKOU A, et al. How biofilms evade host defenses[J]. Microbiol Spectr, 2015, 3(3). DOI:10.1128/microbiolspec.MB-0012-2014 [12] CAMPOCCIA D, MIRZAEI R, MONTANARO L, et al. Hijacking of immune defences by biofilms:a multifront strategy[J]. Biofouling, 2019, 35(10):1055-1074. [13] HERNÁNDEZ-CHÁVEZ M J, PÉREZ-GARCÍA L A, NIÑO-VEGA G A, et al. Fungal strategies to evade the host immune recognition[J]. J Fungi (Basel), 2017, 3(4). DOI:10.3390/jof3040051 [14] ALMATAR M, ALBARRI O, MAKKY EA, et al. Efflux pump inhibitors:new updates[J]. Pharmacol Rep, 2021, 73(1):1-16. [15] CANNON R D, LAMPING E, HOLMES A R, et al. Efflux-mediated antifungal drug resistance[J]. Clin Microbiol Rev, 2009, 22(2):291-321, Table of Contents. [16] NIERMAN W C, PAIN A, ANDERSON M J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus[J]. Nature, 2005, 438(7071):1151-1156. [17] DA SILVA FERREIRA M E, CAPELLARO J L, DOS REIS MARQUES E, et al. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance[J]. Antimicrob Agents Chemother, 2004, 48(11):4405-4413. [18] CHAMILOS G, KONTOYIANNIS D P. Update on antifungal drug resistance mechanisms of Aspergillus fumigatus[J]. Drug Resist Updat, 2005, 8(6):344-358. [19] BOJSEN R, REGENBERG B, FOLKESSON A. Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase[J]. BMC Microbiol, 2014, 14:305.DOI:10.1186/s12866-014-0305-4. [20] LAFLEUR M D, KUMAMOTO C A, LEWIS K. Candida albicans biofilms produce antifungal-tolerant persister cells[J]. Antimicrob Agents Chemother, 2006, 50(11):3839-3846. [21] SUN N, LI D, FONZI W, et al. Multidrug-resistant transporter mdr1p-mediated uptake of a novel antifungal compound[J]. Antimicrob Agents Chemother, 2013, 57(12):5931-5939. [22] 刘登科, 牛虹博, 葛正茂, 等. 曲霉菌对唑类药物的耐药机制最新研究进展[J].现代检验医学杂志, 2020,35(2):161-164. [23] CHATTERJEE S, DAS S. Developmental stages of biofilm and characterization of extracellular matrix of manglicolous fungus Aspergillus niger BSC-1[J]. J Basic Microbiol, 2020, 60(3):231-242. [24] BEAUVAIS A, SCHMIDT C, GUADAGNINI S, et al. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus[J]. Cell Microbiol, 2007, 9(6):1588-600. [25] KARYGIANNI L, REN Z, KOO H, et al. Biofilm Matrixome:Extracellular components in structured microbial communities[J]. Trends Microbiol, 2020, 28(8):668-681. [26] MITCHELL K F, ZARNOWSKI R, ANDES D R. The extracellular matrix of fungal biofilms[J]. Adv Exp Med Biol, 2016, 931:21-35. DOI:10.1007/5584_2016_6. [27] MIYAZAWA K, YOSHIMI A, ABE K. The mechanisms of hyphal pellet formation mediated by polysaccharides, α-1,3-glucan and galactosaminogalactan, in Aspergillus species[J]. Fungal Biol Biotechnol, 2020, 7:10. DOI:10.1186/s40694-020-00101-4. [28] SPETH C, RAMBACH G, LASS-FLÖRL C, et al. Galactosaminogalactan (GAG) and its multiple roles in Aspergillus pathogenesis[J]. Virulence, 2019, 10(1):976-983. [29] BORGHI E, BORGO F, MORACE G. Fungal biofilms:update on resistance[J]. Adv Exp Med Biol, 2016, 931:37-47.DOI:10.1007/5584_2016_7. [30] VAN ACKER H, VAN DIJCK P, COENYE T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms[J]. Trends Microbiol, 2014, 22(6):326-333. [31] RAMAGE G, RAJENDRAN R, SHERRY L, et al. Fungal biofilm resistance[J]. Int J Microbiol, 2012, 2012:528521. DOI:10.1155/2012/528521. [32] WAINWRIGHT J, HOBBS G, NAKOUTI I. Persister cells:formation, resuscitation and combative therapies[J]. Arch Microbiol, 2021, 203(10):5899-5906. [33] LEWIS K. Multidrug tolerance of biofilms and persister cells[J]. Curr Top Microbiol Immunol, 2008, 322:107-131. DOI:10.1007/978-3-540-75418-3_6. [34] MAJIMA H, ARAI T, KUSUYA Y, et al. Genetic differences between Japan and other countries in cyp51A polymorphisms of Aspergillus fumigatus[J]. Mycoses, 2021, 64(11):1354-1365. [35] MORELLI K A, KERKAERT J D, CRAMER R A. Aspergillus fumigatus biofilms:Toward understanding how growth as a multicellular network increases antifungal resistance and disease progression[J]. PLoS Pathog, 2021, 17(8):e1009794. DOI:10.1371/journal.ppat.1009794 [36] ROBBINS N, UPPULURI P, NETT J, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms[J]. PLoS Pathog, 2011, 7(9):e1002257. DOI:10.1371/journal.ppat.1002257 [37] TU B, YIN G, LI H. Synergistic effects of vorinostat (SAHA) and azoles against Aspergillus species and their biofilms[J]. BMC Microbiol, 2020, 20(1):28. DOI:10.1186/s12866-020-1718-x [38] KOWALSKI CH, MORELLI KA, SCHULTZ D, et al. Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance[J]. Proc Natl Acad Sci U S A, 2020, 117(36):22473-22483. [39] LOUSSERT C, SCHMITT C, PREVOST M C, et al. In vivo biofilm composition of Aspergillus fumigatus[J]. Cell Microbiol, 2010, 12(3):405-410. [40] DONLAN R M, COSTERTON J W. Biofilms:survival mechanisms of clinically relevant microorganisms[J]. Clin Microbiol Rev, 2002, 15(2):167-193. |