[1] BONGOMIN F, GAGO S, OLADELE R O, et al. Global and multi-national prevalence of fungal diseases-estimate precision[J]. J Fungi, 2017, 3(4):57-85. [2] ROBBINS N, CAPLAN T, COWEN L E. Molecular evolution of antifungal drug resistance[J]. Annu Rev Microbiol, 2017, 71(1):753-775. [3] ROMÁN E, PRIETO D, ALONSO-MONGE R, et al. New insights of CRISPR technology in human pathogenic fungi[J]. Future Microbiol, 2019, 14(14):1243-1255. [4] UTHAYAKUMAR D, SHARMA J, WENSING L, et al. CRISPR-based genetic manipulation of Candida species:Historical perspectives and current approaches[J]. Front Genome Ed, 2021, 2:606281-606303. DOI:10.3389/fgeed.2020.606281. [5] JIANG F, DOUDNA J A. CRISPR-Cas9 structures and mechanisms[J]. Annu Rev Biophys, 2017, 46(1):505-529. [6] BRANDSMA I, VAN GENT D C. Pathway choice in DNA double strand break repair:observations of a balancing act[J]. Genome Integr, 2012, 3(1):9-18. [7] FULLER K K, CHEN S, LOROS J J, et al. Development of the CRISPR/Cas9 System for targeted gene disruption in Aspergillus fumigatus[J]. Eukaryotic cell, 2015, 14(11):1073-1080. [8] UMEYAMA T, HAYASHI Y, SHIMOSAKA H, et al. CRISPR/Cas9 genome editing to demonstrate the contribution of Cyp51A Gly138Ser to azole resistance in Aspergillus fumigatus[J]. Antimicrob Agents Chemother, 2018, 62(9):e00894-00818. [9] HUANG L G, DONG H Z, ZHENG J W, et al. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion[J]. Microbiol Res, 2019, 223-225:44-50. DOI:10.1016/j.micres.2019.03.007. [10] WANG P, MITCHELL A P, BAHN Y-S, et al. Two distinct approaches for CRISPR-Cas9-mediated gene editing in Cryptococcus neoformans and related species[J]. mSphere, 2018, 3(3):e00208-00218. [11] LIN J, FAN Y, LIN X. Transformation of Cryptococcus neoformans by electroporation using a transient CRISPR-Cas9 expression (TRACE) system[J]. Fungal Genet Biol, 2020, 138:103364-103371. DOI:10.1016/j.fgb.2020.103364. [12] VYAS V K, BARRASA M I, FINK G R. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families[J]. Science Advances, 2015, 1(3):e1500248-e1500248. [13] LOMBARDI L, OLIVEIRA-PACHECO J, BUTLER G, et al. Plasmid-based CRISPR-Cas9 gene editing in multiple Candida species[J]. mSphere, 2019, 4(2):e00125-00119. [14] RAINHA J, RODRIGUES J L, RODRIGUES L R. CRISPR-Cas9:A powerful tool to efficiently engineer Saccharomyces cerevisiae[J]. Life, 2021, 11(1):13-28. [15] NORTON E L, SHERWOOD R K, BENNETT R J. Development of a CRISPR-Cas9 system for efficient genome editing of Candida lusitaniae[J]. mSphere, 2017, 2(3):e00217-00217. [16] ZHANG C, MENG X, WEI X, et al. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus[J]. Fungal Genet Biol, 2016, 86:47-57. DOI:10.1016/j.fgb.2015.12.007. [17] 贺小圆, 赵明峰. 念珠菌耐药机制的研究进展[J]. 中国真菌学杂志, 2015, 10(1):49-53. [18] MORIO F, LOMBARDI L, BINDER U, et al. Precise genome editing using a CRISPR-Cas9 method highlights the role of CoERG11 amino acid substitutions in azole resistance in Candida orthopsilosis[J]. J Antimicrob Chemother, 2019, 74(8):2230-2238. [19] BALLARD E, WEBER J, MELCHERS W J G, et al. Recreation of in-host acquired single nucleotide polymorphisms by CRISPR-Cas9 reveals an uncharacterised gene playing a role in Aspergillus fumigatus azole resistance via a non-cyp51A mediated resistance mechanism[J]. Fungal Genet Biol, 2019, 130:98-106. DOI:10.1016/j.fgb.2019.05.005. [20] MARTEL C M, PARKER J E, WARRILOW A G S, et al. Complementation of a Saccharomyces cerevisiae ERG11/CYP51 doxycycline-regulated mutant and screening of the azole sensitivity of Aspergillus fumigatus isoenzymes CYP51A and CYP51B[J]. Antimicrob Agents Chemother, 2010, 54(11):4920-4923. [21] PÉREZ-CANTERO A, MARTIN-VICENTE A, GUARRO J, et al. Analysis of the contribution ofcyp51 genes to azole resistance in Aspergillus section nigri with the CRISPR-Cas9 technique[J]. Antimicrob Agents Chemother, 2021, 65(5):e01996-01920. [22] RYBAK J M, DOORLEY L A, NISHIMOTO A T, et al. Abrogation of triazole resistance upon deletion ofCDR1 in a clinical isolate of Candida auris[J]. Antimicrob Agents Chemother, 2019, 63(4):e00057-00019. [23] RYBAK J M, MUÑOZ J F, BARKER K S, et al. Mutations in TAC1B:a novel genetic determinant of clinical fluconazole resistance in Candida auris[J]. mBio, 2020, 11(3):e00365-00320. [24] KANNAN A, ASNER S A, TRACHSEL E, et al. Comparative genomics for the elucidation of multidrug resistance in Candida lusitaniae[J]. mBio, 2019, 10(6):e02512-02519. [25] HOU X, HEALEY K R, SHOR E, et al. NovelFKS1 and FKS2modifications in a high-level echinocandin resistant clinical isolate of Candida glabrata[J]. Emerg Microbes Infec, 2019, 8(1):1619-1625. [26] LEE K K, KUBO K, ABDELAZIZ J A, et al. Yeast species-specific, differential inhibition of β-1,3-glucan synthesis by poacic acid and caspofungin[J]. The Cell Surface, 2018, 3:12-25. [27] KAPOOR M, MOLONEY M, SOLTOW Q A, et al. Evaluation of resistance development to the Gwt1 inhibitor manogepix (APX001A) in Candida species[J]. Antimicrob Agents Chemother, 2019, 64(1):e01387-01319. [28] HUANG C Y, CHEN Y C, WU HSIEH B A, et al. The ca-loop in thymidylate kinase is critical for growth and contributes to pyrimidine drug sensitivity of Candida albicans[J]. J Biol Chem, 2019, 294(27):10686-10697. [29] SUN Q Q, XIONG K, YUAN Y C, et al. Inhibiting fungal echinocandin resistance by small-molecule disruption of geranylgeranyltransferase type I activity[J]. Antimicrob Agents Chemother, 2020, 64(2):e02046-02019. [30] DEMUYSER L, PALMANS I, VANDECRUYS P, et al. Molecular elucidation of riboflavin production and regulation in Candida albicans, toward a novel antifungal drug target[J]. mSphere, 2020, 5(4):e00714-00720. [31] KLEINSTIVER B P, PREW M S, TSAI S Q, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities[J]. Nature, 2015, 523(7561):481-485. [32] HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699):57-63. [33] DEVEAU H, BARRANGOU R, GARNEAU J E, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus[J]. J Bacteriol, 2008, 190(4):1390-1400. [34] CHO S W, KIM S, KIM Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome Res, 2014, 24(1):132-141. [35] FU Y F, SANDER J D, REYON D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3):279-284. [36] IANIRI G, DAGOTTO G, SUN S, et al. Advancing functional genetics through agrobacterium-mediated insertional mutagenesis and CRISPR/Cas9 in the commensal and pathogenic Yeast Malassezia[J]. Genetics, 2019, 212(4):1163-1179. [37] WANG Q, COLEMAN J J. CRISPR/Cas9-mediated endogenous gene tagging in Fusarium oxysporum[J]. Fungal Genet Biol, 2019, 126:17-24. DOI:10.1016/j.fgb.2019.02.002. [38] KUJOTH G C, SULLIVAN T D, MERKHOFER R, et al. CRISPR/Cas9-mediated gene disruption reveals the importance of zinc metabolism for fitness of the dimorphic fungal pathogen Blastomyces dermatitidis[J]. mBio, 2018, 9(2):e00412-00418. |