[1] FANNING S, MITCHELL A P.Fungal biofilms[J].PLoS Pathog, 2012, 8(4):e1002585. [2] BORGHI E, BORGO F, MORACE G.Fungal biofilms:update on resistance[J].Adv Exp Med Biol, 2016, 931:37-47.DOI:10.1007/5584_2016_7. [3] RAMAGE G, RAJENDRAN R, SHERRY L, et al.Fungal biofilm resistance[J].Int J Microbiol, 2012, 2012:528521.DOI:10.1155/2012/528521. [4] VAUDEL M, BARSNES H, RAEDER H, et al.Using proteomics bioinformatics tools and resources in proteogenomic studies[J].Adv Exp Med Biol, 2016, 926:65-75.DOI:10.1007/978-3-319-42316-6_5. [5] PIERCE C G, THOMAS D P, LOPEZ-RIBOT J L.Effect of tunicamycin on Candida albicans biofilm formation and maintenance[J].J Antimicrob Chemother, 2009, 63(3):473-479. [6] MUSZKIETA L, BEAUVAIS A, PAHTZ V, et al.Investigation of Aspergillus fumigatus biofilm formation by various "omics" approaches[J].Front Microbiol, 2013, 4:13.DOI:10.3389/fmicb.2013.00013. [7] MAUVOISIN D.Circadian rhythms and proteomics:It's all about posttranslational modifications[J] ! Wiley Interdiscip Rev Syst Biol Med, 2019, 11(5):e1450. [8] 冯雪, 王彬, 黄占景, 等.蛋白质组学研究的相关技术进展[J].生物学教学, 2010, 35(3):4-5. [9] 刘原志, 章强强.iTRAQ技术在真菌研究中的应用进展[J].中国真菌学杂志, 2015, 10(3):185-189. [10] AEBERSOLD R, MANN M.Mass-spectrometric exploration of proteome structure and function[J].Nature, 2016, 537(7620):347-355. [11] CROXATTO A, PROD'HOM G, GREUB G.Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology[J].FEMS Microbiol Rev, 2012, 36(2):380-407. [12] MARTYNIUK C J, ALVAREZ S, DENSLOW N D.DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology[J].Ecotoxicol Environ Saf, 2012, 76(2):3-10. [13] PARK S S, WU W W, ZHOU Y, et al.Effective correction of experimental errors in quantitative proteomics using stable isotope labeling by amino acids in cell culture (SILAC)[J].J Proteomics, 2012, 75(12):3720-3732. [14] NEILSON K A, ALI N A, MURALIDHARAN S, et al.Less label, more free:approaches in label-free quantitative mass spectrometry[J].Proteomics, 2011, 11(4):535-553. [15] DISTLER U, KUHAREV J, NAVARRO P, et al.Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics[J].Nat Protoc, 2016, 11(4):795-812. [16] GABELICA V, SHVARTSBURG A A, AFONSO C, et al.Recommendations for reporting ion mobility mass spectrometry measurements[J].Mass Spectrom Rev, 2019, 38(3):291-320. [17] 吴琼, 隋欣桐, 田瑞军.高通量蛋白质组学分析研究进展[J].色谱, 2021, 39(2):112-117. [18] GILLET L C, NAVARRO P, TATE S, et al.Targeted data extraction of the MS/MS spectra generated by data-independent acquisition:a new concept for consistent and accurate proteome analysis[J].Mol Cell Proteomics, 2012, 11(6):O111016717. [19] LUDWIG C, GILLET L, ROSENBERGER G, et al.Data-independent acquisition-based SWATH-MS for quantitative proteomics:a tutorial[J].Mol Syst Biol, 2018, 14(8):e8126. [20] PEREZ-RIVEROL Y, ALPI E, WANG R, et al.Making proteomics data accessible and reusable:current state of proteomics databases and repositories[J].Proteomics, 2015, 15(5-6):930-949. [21] TAFF H T, MITCHELL K F, EDWARD J A, et al.Mechanisms of Candida biofilm drug resistance[J].Future Microbiol, 2013, 8(10):1325-1337. [22] SONG N, QIAN G, ZHENG H, et al.Biofilm alterations on the stepwise acquisition of fluconazole resistant Candida albicans isolates[J].International Journal of Dermatology and Venereology, 2022.DOI:10.1097/jd9.0000000000000223. [23] MITCHELL K F, ZARNOWSKI R, ANDES D R.The extracellular matrix of fungal biofilms[J].Adv Exp Med Biol, 2016, 931:21-35.DOI:10.1007/5584_2016_6. [24] THOMAS D P, BACHMANN S P, LOPEZ-RIBOT J L.Proteomics for the analysis of the Candida albicans biofilm lifestyle[J].Proteomics, 2006, 6(21):5795-5804. [25] MARTINEZ-GOMARIZ M, PERUMAL P, MEKALA S, et al.Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of Candida albicans[J].Proteomics, 2009, 9(8):2230-2252. [26] ZARNOWSKI R, WESTLER W M, LACMBOUH G A, et al.Novel entries in a fungal biofilm matrix encyclopedia[J].mBio, 2014, 5(4):e01333-14. [27] AL-FATTANI M A, DOUGLAS L J.Biofilm matrix of Candida albicans and Candida tropicalis:chemical composition and role in drug resistance[J].J Med Microbiol, 2006, 55(Pt 8):999-1008. [28] FARIA-OLIVEIRA F, CARVALHO J, BELMIRO C L, et al.Methodologies to generate, extract, purify and fractionate yeast ECM for analytical use in proteomics and glycomics[J].BMC Microbiol, 2014, 14:244.DOI:10.1186/s12866-014-0244-0. [29] GIL-BONA A, PARRA-GIRALDO C M, HERNAEZ M L, et al.Candida albicans cell shaving uncovers new proteins involved in cell wall integrity, yeast to hypha transition, stress response and host-pathogen interaction[J].J Proteomics, 2015, 127(Pt B):340-351. [30] MUNUSAMY K, LOKE M F, VADIVELU J, et al.LC-MS analysis reveals biological and metabolic processes essential for Candida albicans biofilm growth[J].Microb Pathog, 2021, 152:104614.DOI:10.1016/j.micpath.2020.104614. [31] LI P, SENEVIRATNE C J, ALPI E, et al.Delicate metabolic control and coordinated stress response critically determine antifungal tolerance of Candida albicans biofilm persisters[J].Antimicrob Agents Chemother, 2015, 59(10):6101-6112. [32] TRUONG T, ZENG G, QINGSONG L, et al.Comparative ploidy proteomics of Candida albicans biofilms unraveled the role of the AHP1 gene in the biofilm persistence against amphotericin B[J].Mol Cell Proteomics, 2016, 15(11):3488-3500. [33] SENEVIRATNE C J, WANG Y, JIN L, et al.Proteomics of drug resistance in Candida glabrata biofilms[J].Proteomics, 2010, 10(7):1444-1454. [34] VAN DE VEERDONK F L, GRESNIGT M S, ROMANI L, et al.Aspergillus fumigatus morphology and dynamic host interactions[J].Nat Rev Microbiol, 2017, 15(11):661-674. [35] LATGE J P, CHAMILOS G.Aspergillus fumigatus and aspergillosis in 2019[J].Clin Microbiol Rev, 2019, 33(1):e00140-18. [36] REICHHARDT C, FERREIRA J A, JOUBERT L M, et al.Analysis of the Aspergillus fumigatus biofilm extracellular matrix by solid-state nuclear magnetic resonance spectroscopy[J].Eukaryot Cell, 2015, 14(11):1064-1072. [37] BRUNS S, SEIDLER M, ALBRECHT D, et al.Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin[J].Proteomics, 2010, 10(17):3097-3107. [38] RAJENDRAN R, MOWAT E, MCCULLOCH E, et al.Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity[J].Antimicrob Agents Chemother, 2011, 55(5):2092-2097. [39] SANTI L, BEYS-DA-SILVA W O, BERGER M, et al.Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes[J].J Proteome Res, 2014, 13(3):1545-1559. [40] YANG X, XIA Z, LIAO Y, et al.Proteomic analysis of serial isolates of Trichosporon asahii identifies host-specific adaptations using the TMT/MRM approach[J].J Proteomics, 2021, 245:104309.DOI:10.1016/j.jprot.2021.104309. [41] BEAUVAIS A, SCHMIDT C, GUADAGNINI S, et al.An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus[J].Cell Microbiol, 2007, 9(6):1588-1600. [42] HATINGUAIS R, WILLMENT J A, BROWN G D.PAMPs of the fungal cell wall and mammalian PRRs[J].Curr Top Microbiol Immunol, 2020, 425:187-223.DOI:10.1007/82_2020_201. [43] GOYAL S, CASTRILLON-BETANCUR J C, KLAILE E, et al.The interaction of human pathogenic fungi with C-type lectin receptors[J].Front Immunol, 2018, 9:1261.DOI:10.3389/fimmu.2018.01261. [44] HOPKE A, BROWN A J P, HALL R A, et al.Dynamic fungal cell wall architecture in stress adaptation and immune evasion[J].Trends Microbiol, 2018, 26(4):284-295. [45] BEYDA N D, LIAO G, ENDRES B T, et al.Innate inflammatory response and immunopharmacologic activity of micafungin, caspofungin, and voriconazole against wild-type and FKS mutant Candida glabrata isolates[J].Antimicrob Agents Chemother, 2015, 59(9):5405-5412. [46] SENEVIRATNE C J, WANG Y, JIN L, et al.Unraveling the resistance of microbial biofilms:has proteomics been helpful[J]?Proteomics, 2012, 12(4-5):651-665. [47] WAGENER J, STRIEGLER K, WAGENER N.α- and β-1, 3-glucan synthesis and remodeling[J].Curr Top Microbiol Immunol, 2020, 425:53-82.DOI:10.1007/82_2020_200. |