[1] SANGUINETTI M, POSTERARO B, LASS-FLÖRL C.Antifungal drug resistance among Candida species:mechanisms and clinical impact[J].Mycoses, 2015, 58:2-13.DOI:10.1111/myc.12330. [2] CHEN M, XU Y, HONG N, et al.Epidemiology of fungal infections in China[J].FRONT MED-PRC, 2018, 12(1):58-75. [3] CHAKRABARTI A, SOOD P.On the emergence, spread and resistance of Candida auris:host, pathogen and environmental tipping points[J].J Med Microbiol, 2021, 70:001318.DOI:10.1099/jmm.0.001318. [4] WARRILOW A G, NISHIMOTO A T, PARKER J E, et al.The evolution of azole resistance in Candida albicans sterol 14α-demethylase (CYP51)through incremental amino acid substitutions[J].Antimicrob Agents Chemother, 2019, 63(5):e02586-18. [5] GOŁBEK K, STRZELCZYK J K, OWCZAREK A, et al.Selected mechanisms of molecular resistance of Candida albicans to azole drugs[J].Acta Biochim Pol, 2015, 62(2):247-251. [6] DUNKEL N, LIU T T, BARKER K S, et al.A gain-offunction mutation in the transcription factor upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate[J].Eukaryot Cell, 2008, 7(7):1180-1190. [7] BEN-AMI R, GARCIA-EFFRON G, LEWIS R E, et al.Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance[J].JInfect Dis, 2011, 204(4):626-635. [8] LEE K K, MACCALLUM D M, JACOBSEN M D, et al.Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo[J].Antimicrob Agents Chemother, 2011, 56(1):208-217. [9] SPETTEL K, GALAZKA S, KRIZ R, et al.Do Candida albicans isolates with borderline resistant micafungin mICs always harbor FKS1 hot spot mutations[J]?J Fungi, 2021, 7(2):93. [10] BHATTACHARYA S, SOBEL J D, WHITE T C.A combination fluorescence assay demonstrates increased efflux pump activity as a resistance mechanism in azole-resistant vaginal Candida albicans isolates[J].Antimicrob Agents Chemother, 2016, 60(10):5858-5866. [11] KHOSRAVI R K, FALAHATI M, ROUDBARY M, et al.Overexpression of MDR-1 and CDR-2 genes in fluconazole resistance of Candida albicans isolated from patients with vulvovaginal candidiasis[J].Curr Med Mycol, 2016, 2(4):24-29. [12] LIU J, WEI B, WANG Y, et al.The H741D mutation in Tac1p contributes to the upregulation of CDR1 and CDR2expression in Candida albicans[J].Braz J Microbiol, 2020, 51(4):1553-1561. [13] LI W, LIU J, SHI C, et al.FLO8 deletion leads to azole resistance by upregulating CDR1 and CDR2 in Candida albicans[J].Res Microbiol, 2019, 170(6-7):272-279. [14] SCHUBERT S, POPP C, ROGERS P D, et al.Functional dissection of a Candida albicans zinc cluster transcription factor, the multidrug resistance regulator Mrr1[J].EU-KARYOT CELL, 2011, 10(8):1110-1121. [15] SCHUBERT S, BARKER K S, ZNAIDI S, et al.Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1in Candida albicans[J].Antimicrob Agents Chemother, 2011, 55(5):2212-2223. [16] MOGAVERO S, TAVANTI A, SENESI S, et al.Differential requirement of the transcription factor Mcm1for activation of the Candida albicans multidrug efflux pump MDR1by its regulators Mrr1and Cap1[J].Antimicrob Agents Chemother, 2011, 55(5):2061-2066. [17] WANG Y, LIU J, SHI C, et al.Mutations in transcription factor Mrr2p contribute to fluconazole resistance in clinical isolates of Candida albicans[J].Int J Antimicrob Agents, 2015, 46(5):552-559. [18] NISHIMOTO A T, ZHANG Q, HAZLETT B, et al.Contribution of clinically derived mutations in the gene encoding the zinc cluster transcription factor Mrr2to fluconazole antifungal resistance and CDR1 expression in Candida albicans[J].Antimicrob Agents Chemother, 2019, 63(5):e00078-19.DOI:10.1128/AAC.00078-19. [19] KHANDELWAL N K, WASI M, NAIR R, et al.Vacuolar sequestration of azoles, a novel strategy of azole antifungal resistance conserved across pathogenic and nonpathogenic yeast[J].Antimicrob Agents Chemother, 2019, 63(3):e01347-18. [20] KHANDELWAL N K, CHAUHAN N, SARKAR P, et al.Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling[J].J Biol Chem, 2018, 293(2):412-432. [21] WALL G, MONTELONGO-JAUREGUI D, VIDAL BON-IFACIO B, et al.Candida albicans biofilm growth and dispersal:contributions to pathogenesis[J].Curr Opin Microbiol, 2019, 52:1-6.DOI:10.1016/j.mib.2019.04.001. [22] NETT J E, CRAWFORD K, MARCHILLO K, et al.Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene[J].Antimicrob Agents Chemother, 2010, 54(8):3505-3508. [23] KERNIEN J F, JOHNSON C J, BAYLESS M L, et al.Neutrophils from patients with invasive candidiasis are inhibited by Candida albicans biofilms[J].Front Immunol, 2020, 11:587956.DOI:10.3389/fimmu.2020.587956. [24] UPPULURI P, NETT J, HEITMAN J, et al.Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms[J].Antimicrob Agents Chemother, 2008, 52(3):1127-1132. [25] JIA W, ZHANG H, LI C, et al.The calcineruin inhibitor cyclosporine a synergistically enhances the susceptibility of Candida albicans biofilms to fluconazole by multiple mechanisms[J].BMC Microbiol, 2016, 16:113.DOI:10.1186/s12866-016-0728-1. [26] LIU S, YUE L, GU W, et al.Synergistic effect of fluconazole and calcium channel blockers against resistant Candida albicans[J].PLOS ONE, 2016, 11(3):e150859.DOI:10.1371/journal.pone.0150859. [27] SINGH S D, ROBBINS N, ZAAS A K, et al.Hsp90governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin[J].PLoS Pathog, 2009, 5(7):e1000532. [28] LI L, LIAO Z, YANG Y, et al.Metabolomic profiling for the identification of potential biomarkers involved in a laboratory azole resistance in Candida albicans[J].PLOS ONE, 2018, 13(2):e192328. [29] GAO J, WANG H, LI Z, et al.Candida albicans gains azole resistance by altering sphingolipid composition[J].Nat Commun, 2018, 9:4495.DOI:10.1038/s41467-018-06944-1. [30] YAN L, LI M, CAO Y, et al.The alternative oxidase of Candida albicans causes reduced fluconazole susceptibility[J].J Antimicrob Chemother, 2009, 64(4):764-773. [31] THOMAS E, ROMAN E, CLAYPOOL S, et al.Mitochondria influence CDR1 efflux pump activity, Hog1-mediated oxidative stress pathway, iron homeostasis, and ergosterol levels in Candida albicans[J].Antimicrob Agents Chemother, 2013, 57(11):5580-5599. [32] GUO H, XIE S M, LI S X, et al.Involvement of mitochondrial aerobic respiratory activity in efflux-mediated resistance of C.albicans to fluconazole[J].J Mycol Med, 2017, 27(3):339-344. [33] MUZAFAR S, SHARMA R D, SHAH A H, et al.Identification of genomewide alternative splicing events in sequential, isogenic clinical isolates of Candida albicans reveals a novel mechanism of drug resistance and tolerance to cellular stresses[J].mSphere, 2020, 5(4):e00608-20. [34] YANG F, TEOH F, TAN A S M, et al.Aneuploidy enables cross-adaptation to unrelated drugs[J].Mol Biol Evol, 2019, 36(8):1768-1782. [35] LI X, YANG F, LI D, et al.Trisomy of chromosome rconfers resistance to triazoles in Candidaalbicans[J].Med Mycol, 2015, 53(3):302-309. [36] HANS S, FATIMA Z, HAMEED S.Magnesium deprivation affects cellular circuitry involved in drug resistance and virulence in Candida albicans[J].J Glob Antimicrob Resist, 2019, 17:263-275.DOI:10.1016/j.jgar.2019.01.011. [37] HUNSAKER E W, FRANZ K J.Copper potentiates azole antifungal activity in a way that does not involve complex formation[J].Dalton Trans, 2019, 48(26):9654-9662. [38] HUNSAKER E W, FRANZ K J.Candida albicans reprioritizes metal handling during fluconazole stress[J].Metallomics, 2019, 11(12):2020-2032. [39] BANDARA H M H N, WOOD D L A, VAN-WONTERGHEM I, et al.Fluconazole resistance in Candida albicans is induced by Pseudomonas aeruginosa quorum sensing[J].Sci Rep, 2020, 10(1):7769. |