[1] WHO. WHO coronavirus (COVID-19) dashboard. https://covid19.who.int/. [2] WAN Y, SHANG J, GRAHAM R, et al. Receptor recognition by the novel coronavirus from Wuhan:an analysis based on decade-long structural studies of SARS coronavirus[J]. J Virol,2020, 94(7):e00127-00120. [3] TAY M Z, POH C M, RÉNIA L, et al. The trinity of COVID-19:immunity, inflammation and intervention[J]. Nat Rev Immunol,2020, 20(6):363-374. [4] ZHOU Y, FU B, ZHENG X, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients[J]. Natl Sci Rev,2020, 7(6):998-1002. [5] SONG G, LIANG G, LIU W. Fungal co-infections associated with global COVID-19 pandemic:a clinical and diagnostic perspective from China[J]. Mycopathologia,2020, 185(4):599-606. [6] GANGNEUX J P, BOUGNOUX M E, DANNAOUI E, et al. Invasive fungal diseases during COVID-19:we should be prepared[J]. J Mycol Med,2020, 30(2):100971. [7] CHEN N, ZHOU M, DONG X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China:a descriptive study[J]. Lancet,2020, 395(10113):507-513. [8] SARDA R, SWAIN S, RAY A, et al. COVID-19 associated mucormycosis:an epidemic within a pandemic[J]. QJM,2021, 114(6):355-356. [9] WHITE P L, DHILLON R, CORDEY A, et al. A national strategy to diagnose COVID-19 associated invasive fungal disease in the ICU[J]. Clin Infect Dis,2021, 73(7):e1634-e1644. [10] MITAKA H, KUNO T, TAKAGI H, et al. Incidence and mortality of COVID-19-associated pulmonary aspergillosis:a systematic review and meta-analysis[J]. Mycoses, 2021, 64(6):993-1001. [11] KARIYAWASAM R M, DINGLE T C, KULA B E, et al. Defining COVID-19 associated pulmonary aspergillosis:systematic review and meta analysis[J]. Clin Microbiol Infect, 2022.DOI:10.1016/j.cmi.2022.01.027. [12] PEMÁN J, RUIZ-GAITÁN A, GARCÍA-VIDAL C, et al. Fungal co-infection in COVID-19 patients:should we be concerned[J]?Rev Iberoam Micol, 2020, 37(2):41-46. [13] LU Q, ZHU Z, TAN C, et al. Changes of serum IL-10, IL-1β, IL-6, MCP-1, TNF-α, IP-10 and IL-4 in COVID-19 patients[J]. Int J Clin Pract, 2021, 75(9):e14462. [14] SAINZ J, HASSAN L, PEREZ E, et al. Interleukin-10 promoter polymorphism as risk factor to develop invasive pulmonary aspergillosis[J]. Immunol Lett, 2007, 109(1):76-82. [15] CLEMONS K V, GRUNIG G, SOBEL R A, et al. Role of IL-10 in invasive aspergillosis:increased resistance of IL-10 gene knockout mice to lethal systemic aspergillosis[J]. Clin Exp Immunol, 2000, 122(2):186-191. [16] SERO G D, MENCACCI A, CENCI E, et al. Antifungal type 1 responses are upregulated in IL-10-deficient mice[J]. Microbes Infect, 1999, 1(14):1169-1180. [17] LAI C C, YU W L. COVID-19 associated with pulmonary aspergillosis:a literature review[J]. J Microbiol Immunol Infect, 2021, 54(1):46-53. [18] SU H, LI C, WANG Y, et al. Kinetic host defense of the mice infected with Aspergillus fumigatus[J]. Future Microbiol, 2019, 14(8):705-716. [19] CAMARGO J F, BHIMJI A, KUMAR D, et al. Impaired T cell responsiveness to interleukin-6 in hematological patients with invasive aspergillosis[J]. PloS One, 2015, 10(4):e0123171. [20] TUDESQ J J, PEYRONY O, LEMIALE V, et al. Invasive pulmonary aspergillosis in nonimmunocompromised hosts[J]. Semin Respir Crit Care Med, 2019, 40(4):540-547. [21] CAI S, SUN W, LI M, et al. A complex COVID-19 case with rheumatoid arthritis treated with tocilizumab[J]. Clin Rheumatol, 2020, 39(9):2797-2802. [22] AHMED N, MAHMOOD M S, ULLAH M A, et al. COVID-19-associated candidiasis:possible patho-mechanism, predisposing factors, and prevention strategies[J]. Curr Microbiol, 2022, 79(5):127. [23] GARCIA-VIDAL C, SANJUAN G, MORENO-GARCÍA E, et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19:a retrospective cohort study[J]. Clin Microbiol Infect, 2021, 27(1):83-88. [24] ARASTEHFAR A, CARVALHO A, NGUYEN M H, et al. COVID-19-associated candidiasis (CAC):an underestimated complication in the absence of immunological predispositions[J]?J Fungi, 2020, 6(4):211. [25] LIAO M, LIU Y, YUAN J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19[J]. Nat Med, 2020, 26(6):842-844. [26] KULLBERG B J, ARENDRUP M C. Invasive candidiasis[J]. New Engl J Med, 2015, 373(15):1445-1456. [27] CHOW N A, PHARM L G, TSAY S V, et al. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA:a molecular epidemiological survey[J]. Lancet Infect Dis, 2018, 18(12):1377-1384. [28] RAMANATHAN K, ANTOGNINI D, COMBES A, et al. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases[J]. Lancet Respir Med 2020, 8(5):518-526. [29] ARASTEHFAR A, CARVALHO A, VAN DE VEERDONK F L, et al. COVID-19 associated pulmonary aspergillosis (CAPA)-from immunology to treatment[J]. J Fungi, 2020, 6(2):91. [30] SONNWEBER T, BOEHM A, SAHANIC S, et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients'performance:a prospective observational cohort study[J]. Respir Res, 2020, 21(1):276. [31] HABIB H M, IBRAHIM S, ZAIM A, et al. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators[J]. Biomed Pharmacother, 2021, 136:111228. DOI:10.1016/j.biopha.2021.111228. [32] HOENIGL M, SEIDEL D, CARVALHO A, et al. The emergence of COVID-19 associated mucormycosis:a review of cases from 18 countries[J]. Lancet Microbe, 2022. DOI:10.1016/S2666-5247(21)00237-8. [33] AL-TAWFIQ J A, ALHUMAID S, ALSHUKAIRI A N, et al. COVID-19 and mucormycosis superinfection:the perfect storm[J]. Infection, 2021, 49(5):833-853. [34] PAL R, SINGH B, BHADADA S K, et al. COVID-19-associated mucormycosis:an updated systematic review of literature[J]. Mycoses, 2021, 64(12):1452-1459. [35] PAL R, BHADADA S K. COVID-19 and diabetes mellitus:an unholy interaction of two pandemics[J]. Diabetes Metab Syndr, 2020, 14(4):513-517. [36] PERRICONE C, BARTOLONI E, BURSI R, et al. COVID-19 as part of the hyperferritinemic syndromes:the role of iron depletion therapy[J]. Immunol Res, 2020, 68(4):213-224. [37] LI J, WANG X, CHEN J, et al. COVID-19 infection may cause ketosis and ketoacidosis[J]. Diabetes Obes Metab, 2020, 22(10):1935-1941. [38] JIN Y, JI W, YANG H, et al. Endothelial activation and dysfunction in COVID-19:from basic mechanisms to potential therapeutic approaches[J]. Signal Transduct Target Ther, 2020, 5(1):293. [39] HARTNETT K P, JACKSON B R, PERKINS K M, et al. A guide to investigating suspected outbreaks of mucormycosis in healthcare[J]. J Fungi, 2019, 5(3):69. [40] EDITORIAL. Stop neglecting fungi[J]. Nat Microbiol, 2017, 2(8):1-2. [41] ZHAN S H, DEVERMAN B E, CHAN Y A. SARS-CoV-2 is well adapted for humans. What does this mean for re-emergence[J]?bioRxiv, 2020. DOI:10.1101/2020.05.01.073262. [42] KARIM S S A, KARIM Q A. Omicron SARS-CoV-2 variant:a new chapter in the COVID-19 pandemic[J]. Lancet,2021, 398(10317):2126-2128. [43] WANG H, PAULSON K R, PEASE S A, et al. Estimating excess mortality due to the COVID-19 pandemic:a systematic analysis of COVID-19-related mortality, 2020-21[J]. Lancet,2022.DOI:10.1016/S0140-6736(21)02796-3. |