[1] Linden JR, Maccani MA, Laforce-Nesbitt SS,et al. High efficiency opsonin-independent phagocytosis of Candida parapsilosis by human neutrophils[J]. Med Mycol, 2010, 48(2):355-364. [2] Boxx GM, Kozel TR, Nishiya CT, et al. Influence of mannan and glucan on complement activation and C3 binding by Candida albicans[J]. Infect Immun, 2010, 78(3):1250-1259. [3] Brakhage AA, Bruns S, Thywissen A,et al. Interaction of phagocytes with filamentous fungi[J]. Curr Opin Microbiol, 2010, 13(4):409-415. [4] Ermert D, Zychlinsky A, Urban C. Fungal and bacterial killing by neutrophils[J]. Methods Mol Biol, 2009, 470:293-312. [5] Brinkmann V, Reichard U, Goosmann C,et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663):1532-1535. [6] Fuchs TA, Abed U, Goosmann C,et al. Novel cell death program leads to neutrophil extracellular traps[J]. J Cell Biol, 2007, 176(2):231-241. [7] Yipp BG, Kubes P. NETosis:how vital is it[J]? Blood, 2013, 122(16):2784-2794. [8] Yousefi S, Mihalache C, Kozlowski E,et al. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps[J]. Cell Death Differ, 2009, 16(11):1438-1444. [9] Pilsczek FH, Salina D, Poon KK,et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus[J]. J Immunol, 2010, 185(12):7413-7425. [10] Bjornsdottir H, Dahlstrand Rudin A, Klose FP,et al. Phenol-soluble modulin alpha peptide toxins from aggressive Staphylococcus aureus induce rapid formation of neutrophil extracellular traps through a reactive oxygen species-independent pathway[J]. Front Immunol, 2017, 8:257. [11] Douda DN, Khan MA, Grasemann H,et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx[J]. Proc Natl Acad Sci USA, 2015, 112(9):2817-2822. [12] Urban CF, Reichard U, Brinkmann V,et al. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms[J]. Cell Microbiol, 2006, 8(4):668-676. [13] Metzler KD, Fuchs TA, Nauseef WM,et al. Myeloperoxidase is required for neutrophil extracellular trap formation:implications for innate immunity[J]. Blood, 2011, 117(3):953-959. [14] Gogol M, Ostrowska D, Klaga K,et al. Inactivation of alpha1-proteinase inhibitor by Candida albicans aspartic proteases favors the epithelial and endothelial cell colonization in the presence of neutrophil extracellular traps[J]. Acta Biochim Pol, 2016, 63(1):167-175. [15] Byrd AS, O'Brien XM, Johnson CM, et al. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans[J]. J Immunol, 2013, 190(8):4136-4148. [16] Zawrotniak M, Bochenska O, Karkowska-Kuleta J,et al. Aspartic proteases and major cell wall components in Candida albicans trigger the release of neutrophil extracellular traps[J]. Front Cell Infect Microbiol, 2017, 7:414. [17] Wu SY, Weng CL, Jheng MJ,et al. Candida albicans triggers NADPH oxidase-independent neutrophil extracellular traps through dectin-2[J]. PLoS Pathog, 2019, 15(11):e1008096. [18] Rudramurthy SM, Chakrabarti A, Paul RA,et al. Candida auris candidaemia in Indian ICUs:analysis of risk factors[J]. J Antimicrob Chemother, 2017, 72(6):1794-1801. [19] Schelenz S, Hagen F, Rhodes JL,et al. First hospital outbreak of the globally emerging Candida auris in a European hospital[J]. Antimicrob Resist Infect Control, 2016, 5:35. [20] Johnson CJ, Davis JM, Huttenlocher A, et al. Emerging fungal pathogen Candida auris evades neutrophil attack[J]. mBio, 2018, 9(4):e01403-e01418. [21] Glass KA, Longley SJ, Bliss JM,et al. Protection of Candida parapsilosis from neutrophil killing through internalization by human endothelial cells[J]. Virulence, 2015, 6(5):504-514. [22] Johnson CJ, Kernien JF, Hoyer AR,et al. Mechanisms involved in the triggering of neutrophil extracellular traps (NETs) by Candida glabrata during planktonic and biofilm growth[J]. Sci Rep, 2017, 7(1):13065. [23] Patterson TF, Thompson GR, 3rd, Denning DW,et al. Practice guidelines for the diagnosis and management of aspergillosis:2016 update by the Infectious Diseases Society of America[J]. Clin Infect Dis, 2016, 63(4):e1-e60. [24] McCormick A, Heesemann L, Wagener J,et al. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus[J]. Microbes Infect, 2010, 12(12-13):928-936. [25] Gazendam RP, van Hamme JL, Tool AT,et al. Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae:evidence from phagocyte defects[J]. J Immunol, 2016, 196(3):1272-1283. [26] Bruns S, Kniemeyer O, Hasenberg M,et al. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA[J]. PLoS Pathog, 2010, 6(4):e1000873. [27] Clark HL, Abbondante S, Minns MS,et al. Protein deiminase 4 and CR3 regulate Aspergillus fumigatus and beta-glucan-induced neutrophil extracellular trap formation, but hyphal killing is dependent only on CR3[J]. Front Immunol, 2018, 9:1182. [28] Alflen A, Aranda Lopez P, Hartmann AK,et al. Neutrophil extracellular traps impair fungal clearance in a mouse model of invasive pulmonary aspergillosis[J]. Immunobiology, 2020, 225(1):151867. [29] Silva JC, Rodrigues NC, Thompson-Souza GA, et al. Mac-1 triggers neutrophil DNA extracellular trap formation to Aspergillus fumigatus independently of PAD4 histone citrullination[J]. J Leukoc Biol, 2020, 107(1):69-83. [30] Steele C, Rapaka RR, Metz A, et al. The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus[J]. PLoS Pathog, 2005, 1(4):e42. [31] Seger RA. Modern management of chronic granulomatous disease[J]. Br J Haematol. 2008, 140:255-266. [32] Bianchi M, Hakkim A, Brinkmann V, et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis[J]. Blood, 2009, 114(13):2619-2622. [33] Bianchi M, Niemiec MJ, Siler U, et al. Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent[J]. J Allergy Clin Immunol, 2011, 127(5):1243-1252, e1247. [34] Kandhavelu J, Demonte NL, Namperumalsamy VP, et al. Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection[J]. J Proteomics, 2017, 152:13-21. [35] Della Coletta AM, Bachiega TF, de Quaglia e Silva JC, et al. Neutrophil extracellular traps identification in tegumentary lesions of patients with paracoccidioidomycosis and different patterns of NETs generation in vitro[J]. PLoS Negl Trop Dis, 2015, 9(9):e0004037. [36] Mejia SP, Cano LE, Lopez JA, et al. Human neutrophils produce extracellular traps against Paracoccidioides brasiliensis[J]. Microbiology, 2015, 161(Pt 5):1008-1017. [37] Bachiega TF, Dias-Melicio LA, Fernandes RK, et al. Participation of dectin-1 receptor on NETs release against Paracoccidioides brasiliensis:Role on extracellular killing[J]. Immunobiology, 2016, 221(2):228-235. [38] Perfect JR, Dismukes WE, Dromer F, et al. Clinical practice guidelines for the management of cryptococcal disease:2010 update by the Infectious Diseases Society of America[J]. Clin Infect Dis, 2010, 50(3):291-322. [39] Rocha JD, Nascimento MT, Decote-Ricardo D, et al. Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils[J]. Sci Rep, 2015, 5:8008. [40] Springer DJ, Ren P, Raina R, et al. Extracellular fibrils of pathogenic yeast Cryptococcus gattii are important for ecological niche, murine virulence and human neutrophil interactions[J]. PLoS One, 2010, 5(6):e10978. [41] 张秀军, 郭艳阳, 朱振来,等. 中性粒细胞胞外诱捕网抗疣状毛癣菌感染的作用研究[J]. 中国真菌学杂志,2019,13(6):326-331. |