[1] Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host[J]. Nat Rev Microbiol,2017,15(2):96-108.
[2] Brown GD, Denning DW, Gow NA, et al. Hidden killers:human fungal infections[J]. Sci Transl Med,2012,4(165):113r-165r.
[3] Vieira N, Casal M, Johansson B, et al. Functional specialization and differential regulation of short-chain carboxylic acid transporters in the pathogen Candida albicans[J]. Mol Microbiol,2010,75(6):1337-1354.
[4] Ene IV, Brunke S, Brown AJ, et al. Metabolism in fungal pathogenesis[J]. Cold Spring Harb Perspect Med,2014,4(12):a19695.
[5] Barelle CJ, Priest CL, Maccallum DM, et al. Niche-specific regulation of central metabolic pathways in a fungal pathogen[J]. Cell Microbiol,2006,8(6):961-971.
[6] Rodaki A, Bohovych IM, Enjalbert B, et al. Glucose promotes stress resistance in the fungal pathogen Candida albicans[J]. Mol Biol Cell,2009,20(22):4845-4855.
[7] Childers DS, Raziunaite I, Mol AG, et al. The rewiring of ubiquitination targets in a pathogenic yeast promotes metabolic flexibility, host colonization and virulence[J]. PLoS Pathog,2016,12(4):e1005566.
[8] Ries L, Beattie S, Cramer RA, et al. Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi[J]. Mol Microbiol,2018,107(3):277-297.
[9] Ramirez-Zavala B, Mottola A, Haubenreisser J, et al. The Snf1-activating kinase Sak1 is a key regulator of metabolic adaptation and in vivo fitness of Candida albicans[J]. Mol Microbiol,2017,104(6):989-1007.
[10] Alkafeef SS, Yu C, Huang L, et al. Wor1 establishes opaque cell fate through inhibition of the general co-repressor Tup1 in Candida albicans[J]. PLoS Genet,2018,14(1):e1007176.
[11] Koch B, Barugahare AA, Lo TL, et al. A metabolic checkpoint for the yeast-to-hyphae developmental switch regulated by endogenous nitric oxide signaling[J]. Cell Rep,2018,25(8):2244-2258.
[12] Tao L, Du H, Guan G, et al. Discovery of a "white-gray-opaque" tristable phenotypic switching system in Candida albicans:roles of non-genetic diversity in host adaptation[J]. PLoS Biol,2014,12(4):e1001830.
[13] Delgado-Silva Y, Vaz C, Carvalho-Pereira J, et al. Participation of Candida albicans transcription factorRLM1 in cell wall biogenesis and virulence[J]. PLoS One,2014,9(1):e86270.
[14] Ballou ER, Avelar GM, Childers DS, et al. Lactate signalling regulates fungal beta-glucan masking and immune evasion[J]. Nat Microbiol,2016,2:16238.
[15] Oliveira-Pacheco J, Alves R, Costa-Barbosa A, et al. The role of Candida albicans transcription factorRLM1 in response to carbon adaptation[J]. Front Microbiol,2018,9:1127.
[16] Jang SJ, Lee K, Kwon B, et al. Vaginal lactobacilli inhibit growth and hyphae formation of Candida albicans[J]. Sci Rep,2019,9(1):8121.
[17] Wang S, Wang Q, Yang E, et al. Antimicrobial compounds produced by vaginal Lactobacillus crispatus are able to strongly inhibit Candida albicans growth, hyphal formation and regulate virulence-related gene expressions[J]. Front Microbiol,2017,8:564. |