[1] Tada R,Yamanaka D, Nagi-Miura N, et al. Vasculitis and anaphylactoid shock induced in mice by cell wall extract of the fungus Candida metapsilosis[J]. Pol J Microbiol, 2014, 63(2):223-330.
[2] Jia X, Li C, Cao J, et al. Clinical characteristics and predictors of mortality in patients with candidemia:a six-year retrospective study[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(9):1717-1724. DOI:10.1007/s10096-018-3304-9.
[3] Desai JV, Mitchell AP, Andes DR. Fungal biofilms, drug resistance, and recurrent infection[J]. Cold Spring Harb Perspect Med, 2014, 4(10):a019729. DOI:10.1101/cshperspect.a019729.
[4] Silva S, Rodrigues CF, Araujo D, et al. Candida species biofilms' antifungal resistance[J]. J Fungi (Basel), 2017, 3(1):E8. DOI:10.3390/jof3010008.
[5] Fauvart M, De Groote VN, Michiels J. Role of persister cells in chronic infections:clinical relevance and perspectives on anti-persister therapies[J]. J Med Microbiol, 2011, 60(Pt 6):699-709. DOI:10.1099/jmm.0.030932-0.
[6] Lafleur MD, Kumamoto CA, Lewis K. Candida albicans biofilms produce antifungal-tolerant persister cells[J]. Antimicrob Agents Chemother, 2006, 50(11):3839-3846. DOI:10.1128/AA C.00684-06.
[7] Del Pozo JL. Biofilm-related disease[J]. Expert Rev Anti Infect Ther, 2018, 16(1):51-65. DOI:10.1080/14787210.2018.1417036.
[8] Brauner A, Fridman O, Gefen O, et al. Distinguishing between resistance, tolerance and persistence to antibiotic treatment[J]. Nat Rev Microbiol, 2016, 14(5):320-330. DOI:10.1038/nrmicro.2016.34
[9] Vogwill T, Comfort AC, Furio V, et al. Persistence and resistance as complementary bacterial adaptations to antibiotics[J]. J Evol Biol, 2016, 29(6):1223-1233. DOI:10.1111/jeb.12864.
[10] Conlon BP, Rowe SE, Lewis K. Persister cells in biofilm associated infections[J]. Adv Exp Med Biol, 2015, 831:1-9. DOI:10.1007/978-3-319-09782-4_1.
[11] Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells[J]. Nat Rev Microbiol, 2017, 15(8):453-464. DOI:10.1038/nrmicro.2017.42
[12] Wu X, Sun J, Chu H Y, et al.The influence of starvation on Candida albicans biofilm and persisters formation[J]. Shanghai Kou Qiang Yi Xue, 2014, 23(3):285-289.
[13] Sun J, Li Z, Chu H, et al. Candida albicans amphotericin B-tolerant persister formation is closely related to surface adhesion[J].Mycopathologia, 2016, 181(1-2):41-49. DOI:10.1007/s11046-015-9894-1.
[14] Hinnebusch AG. Translational regulation of GCN4 and the general amino acid control of yeast[J]. Annu Rev Microbiol, 2005, 59:407-550. DOI:10.1146/annurev.micro.59.031805.133833.
[15] Rawal Y, Qiu H, Hinnebusch AG. Accumulation of a threonine biosynthetic intermediate attenuates general amino acid control by accelerating degradation of Gcn4 via Pho85 and Cdk8[J]. PLoS Genet, 2014, 10(7):e1004534. DOI:10.1371/journal.pgen.1004534.
[16] Mathe L, Dijck PV. Recent insights into Candida albicans biofilm resistance mechanisms[J]. Curr Genet, 2013, 59(4):251-264. DOI:10.1007/s00294-013-0400-3.
[17] Sundaram A, Grant CM. Oxidant-specific regulation of protein synthesis in Candida albicans[J]. Fungal Genet Biol, 2014, 67:15-23. DOI:10.1016/j.fgb.2014.03.005.
[18] Dos Santos SC, Teixeira MC, Dias PJ, et al. MFS transporters required for multidrug/multixenobiotic (MD/MX) resistance in the model yeast:understanding their physiological function through post-genomic approaches[J]. Front Physiol,2014,5:180. DOI:10.3389/fphys.2014.00180.
[19] Godinho CP, Mira NP, Cabrito TR, et al. Yeast response and tolerance to benzoic acid involves the Gcn4-and Stp1-regulated multidrug/multixenobiotic resistance transporter Tpo1[J]. Appl Microbiol Biotechnol, 2017, 101(12):5005-5018. DOI:10.1007/s00253-017-8277-6.
[20] Tripathi G, Wiltshire C, Macaskill S, et al. Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans[J]. EMBO J, 2002, 21(20):5448-5456.
[21] Sundaram A, Grant CM. A single inhibitory upstream open reading frame (uORF) is sufficient to regulate Candida albicans GCN4 translation in response to amino acid starvation conditions[J]. RNA, 2014, 20(4):559-567. DOI:10.1261/rna.042267.113.
[22] Garcia-Sanchez S, Aubert S, Iraqui I, et al. Candida albicans biofilms:a developmental state associated with specific and stable gene expression patterns[J]. Eukaryot Cell, 2004, 3(2):536-545.
[23] Cui P, Niu H, Shi W, et al. Identification of genes involved in bacteriostatic antibiotic-induced persister formation[J]. Front Microbiol, 2018, 9:413. DOI:10.3389/fmicb.2018.00413.
[24] Li P, Seneviratne C J, Alpi E, et al. Delicate metabolic control and coordinated stress response critically determine antifungal tolerance of Candida albicans biofilm persisters[J]. Antimicrob Agents Chemother, 2015, 59(10):6101-6012. DOI:10.1128/AAC.00543-15.
[25] Sun J, Liu X, Jiang G, et al. Inhibition of nucleic acid biosynthesis makes little difference to formation of amphotericin B-tolerant persisters in Candida albicans biofilm[J]. Antimicrob Agents Chemother, 2015, 59(3):1627-1633. DOI:10.1128/AAC.03765-14.
[26] Shan Y, Lazinski D, Rowe S, et al. Genetic basis of persister tolerance to aminoglycosides in Escherichia coli [J]. MBio, 2015, 6(2):e00078-15. DOI:10.1128/mBio.00078-15.
[27] Kawai Y, Matsumoto S, Ling Y, et al. AldB controls persister formation in Escherichia coli depending on environmental stress[J]. Microbiol Immunol, 2018, 62(5):299-309. DOI:10.1111/1348-0421.12587.
[28] Mittal N, Guimaraes JC, Gross T, et al. The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan[J]. Nat Commun, 2017, 8(1):457. DOI:10.1038/s41467-017-00539-y. |