[1] Kelly MS, Benjamin DK Jr, Smith PB. The epidemiology and diagnosis of invasive candidiasis among premature infants[J]. Clin Perinatol, 2015, 42(1):105-117.
[2] Tao L, Du H, Guan G, et al. Discovery of a "white-gray-opaque" tristable phenotypic switching system in Candida albicans:roles of non-genetic diversity in host adaptation[J]. PLoS Biol, 2014, 12(4):e1001830.
[3] Bommanavar SB, Gugwad S, Malik N. Phenotypic switch:The enigmatic white-gray-opaque transition system of Candida albicans[J]. J Oral Maxillofac Pathol, 2017, 21(1):82-86.
[4] 王娜, 韩琦, 桑建利. 白念珠菌的形态类型及致病性[J]. 生物学通报, 2015, 50(10):3-8.
[5] Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms[J]. Virulence, 2013, 4(2):119-128.
[6] Sudbery PE. Growth of Candida albicans hyphae[J]. Nat Rev Microbiol, 2011, 9(10):737-748.
[7] Huang G, Srikantha T, Sahni N, et al. CO(2) regulates white-to-opaque switching in Candida albicans[J]. Curr Biol, 2009, 19(4):330-334.
[8] Huang G, Yi S, Sahni N, et al. N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans[J]. PLoS Pathog, 2010, 6(3):e1000806.
[9] Du H, Huang G. Environmental pH adaption and morphological transitions in Candida albicans[J]. Curr Genet, 2016, 62(2):283-286.
[10] Sun Y, Cao C, Jia W, et al. pH regulates white-opaque switching and sexual mating in Candida albicans[J]. Eukaryot Cell, 2015, 14(11):1127-1134.
[11] Miller MG, Johnson AD. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating[J]. Cell, 2002, 110(3):293-302.
[12] Huang G, Wang H, Chou S, et al. Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans[J]. Proc Natl Acad Sci USA, 2006, 103(34):12813-12818.
[13] Xie J, Tao L, Nobile CJ, et al. White-opaque switching in natural MTLa/alpha isolates of Candida albicans:evolutionary implications for roles in host adaptation, pathogenesis, and sex[J]. PLoS Biol, 2013, 11(3):e1001525.
[14] Hernday AD, Lohse MB, Fordyce PM, et al. Structure of the transcriptional network controlling white-opaque switching in Candida albicans[J]. Mol Microbiol, 2013, 90(1):22-35.
[15] Wang H, Song W, Huang G, et al. Candida albicans Zcf37, a zinc finger protein, is required for stabilization of the white state[J]. FEBS Lett, 2011, 585(5):797-802.
[16] 钟理, 杨春燕, 吴佳海. 组蛋白去乙酰化酶(HDACs)及其调控的研究进展[J]. 中国农学通报, 2014, 30(21):1-8.
[17] Stevenson JS, Liu H. Regulation of white and opaque cell-type formation in Candida albicans by Rtt109 and Hst3[J]. Mol Microbiol, 2011, 81(4):1078-1091.
[18] Xie J, Jenull S, Tscherner M, et al. The paralogous histone deacetylases Rpd3 and Rpd31 play opposing roles in regulating the white-opaque switch in the fungal pathogen Candida albicans[J]. MBio, 2016, 7(6):e01807-01816.
[19] 李阳. VVC患者临床分离白念珠菌white-gray-opaque三稳态转换对其毒力活性的影响[D]. 山西医科大学, 2016.
[20] Lan CY, Newport G, Murillo L A, et al. Metabolic specialization associated with phenotypic switching in Candida albicans[J]. Proc Natl Acad Sci USA, 2002, 99(23):14907-14912.
[21] 陶丽, 黄广华. 糖代谢相关基因在白念珠菌白-灰转换中的功能研究[C]. 中国遗传学会第九次全国会员代表大会暨学术研讨会论文摘要汇编(2009-2013), 2013.
[22] Geiger J, Wessels D, Lockhart SR, et al. Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans[J]. Infect Immun, 2004, 72(2):667-677.
[23] Mallick EM, Bergeron AC, Jones SK, et al. Phenotypic plasticity regulates Candida albicans interactions and virulence in the vertebrate host[J]. Front Microbiol, 2016, 7:780.
[24] Sasse C, Hasenberg M, Weyler M, et al. White-opaque switching of Candida albicans allows immune evasion in an environment-dependent fashion[J]. Eukaryot Cell, 2013, 12(1):50-58. |