[1] WALL G, HERRERA N, LOPEZ-RIBOT J L. Repositionable compounds with antifungal activity against multidrug resistant Candida auris identified in the medicines for Malaria Venture's pathogen box[J]. J Fungi (Basel), 2019, 5(4):92. [2] SATOH K, MAKIMURA K, HASUMI Y, et al. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital[J]. Microbiol Immunol, 2009, 53(1):41-44. [3] 邹玉,陈宗耀,鄂建飞,等.耳念珠菌实验室鉴定方法的研究进展[J].中国真菌学杂志,2022,17(5):414-420,424. [4] 扈东营,姜伟伟,李航,等.侵袭性念珠菌感染流行病学现状和治疗进展[J].世界临床药物,2020,41(5):323-328. [5] CHOWDHARY A, VOSS A, MEIS J F. Multidrug-resistant Candida auris: 'new kid on the block' in hospital-associated infections[J]? J Hosp Infect, 2016, 94(3):209-212. [6] Centers for Disease Control and Prevention. Antifungal susceptibility testing and interpretation[EB/OL].[2023-07-17]. https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html. [7] ZHAN P, YU B, OUYANG L. Drug repurposing: An effective strategy to accelerate contemporary drug discovery[J]. Drug Discov Today, 2022, 27(7):1785-1788. [8] TURABI K S, DESHMUKH A, PAUL S, et al. Drug repurposing-an emerging strategy in cancer therapeutics[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(10):1139-1158. [9] GHOSH D, SEHGAL K, SODNAR B, et al. Drug repurposing for stroke intervention[J]. Drug Discov Today, 2022, 27(7):1974-1982. [10] PRASANNANJANEYULU V, NENE S, JAIN H, et al. Old drugs, new tricks: Emerging role of drug repurposing in the management of atopic dermatitis[J]. Cytokine Growth Factor Rev, 2022, 65:12-26. [11] JAMPILEK J. Drug repurposing to overcome microbial resistance[J]. Drug Discov Today, 2022, 27(7):2028-2041. [12] KATO Y, NISHIYAMA K, NISHIMURA A, et al. Drug repurposing for the treatment of COVID-19[J]. J Pharmacol Sci, 2022, 149(3):108-114. [13] LATIFI A. Reviewing the effects of miltefosine and suggesting it for the treatment of coronavirus disease (COVID-19)[J]. Infect Dis (Auckl), 2020, 13.DOI:10.1177/1178633720977488. [14] VAN HENTEN S, TESFAYE A B, ABDELA S G, et al. Miltefosine for the treatment of cutaneous leishmaniasis-A pilot study from Ethiopia[J]. PLoS Negl Trop Dis, 2021, 15(5):e0009460. [15] DE LA PRESA M, IBACH M, BERDAHL J, et al. Anterior scleral and limbal inflammatory necrosis after adjuvant miltefosine for recalcitrant acanthamoeba keratitis[J]. Cornea, 2022, 41(6):775-778. [16] BARRETO T L, ROSSATO L, DEFREITAS A L D, et al. Miltefosine as an alternative strategy in the treatment of the emerging fungus Candida auris[J]. Int J Antimicrob Agents, 2020, 56(2):106049. [17] WU Y, TOTTEN M, MEMON W, et al. In vitro antifungal susceptibility of the emerging multidrug-resistant pathogen Candida auris to miltefosine alone and in combination with amphotericin B[J]. Antimicrob Agents Chemother, 2020, 64(2):e02063-19. [18] SPADARI C C, VILA T, ROZENTAL S, et al. Miltefosine has a postantifungal effect and induces apoptosis in Cryptococcus yeasts[J]. Antimicrob Agents Chemother, 2018, 62(8):e00312-18. [19] GUPTA Y K, GUPTA M, ANEJA S, et al. Current drug therapy of protozoal diarrhoea[J]. Indian J Pediatr, 2004, 71(1):55-58. [20] LAWUNG R, CHERDTRAKULKIAT R, NABU S, et al. Repositioning of 8-hydroxyquinoline derivatives as a new promising candidate for combating multidrug resistant Neisseria gonorrhoeae[J]. EXCLI J, 2018, 17:840-846.DOI:10.17179/excli2018-1602. [21] BURNETT B P, MITCHELL C M. Antimicrobial activity of iodoquinol 1%-hydrocortisone acetate 2% gel against ciclopirox and clotrimazole[J]. Cutis, 2008, 82(4):273-280. [22] ROLLIN-PINHEIRO R, BORBA-SANTOS L P, DA SILVA XISTO M I D, et al. Identification of promising antifungal drugs against Scedosporium and Lomentospora species after screening of pathogen box library[J]. J Fungi (Basel), 2021,7(10):803. [23] CHUNG M W, KOMOROWSKI R A, VARMA R R. Suloctidil-induced hepatotoxicity[J]. Gastroenterology, 1988, 95(2):490-491. [24] DE OLIVEIRA H C, MONTEIRO M C, ROSSI S A, et al. Identification of off-patent compounds that present antifungal activity against the emerging fungal pathogen Candida auris[J]. Front Cell Infect Microbiol, 2019, 9:83.DOI:10.3389/fcimb.2019.00083. [25] ZENG B, LI J, WANG Y, et al. In vitro and in vivo effects of suloctidil on growth and biofilm formation of the opportunistic fungus Candida albicans[J]. Oncotarget, 2017, 8(41):69972-69982. [26] BUTTS A, DIDONE L, KOSELNY K, et al. A repurposing approach identifies off-patent drugs with fungicidal cryptococcal activity, a common structural chemotype, and pharmacological properties relevant to the treatment of cryptococcosis[J]. Eukaryot Cell, 2013, 12(2):278-287. [27] DOUGHTY-SHENTON D, JOSEPH J D, ZHANG J, et al. Pharmacological targeting of the mitochondrial phosphatase PTPMT1[J]. J Pharmacol Exp Ther, 2010, 333(2):584-592. [28] MAMOUEI Z, ALQARIHI A, SINGH S. Alexidine dihydrochloride has broad-spectrum activities against diverse fungal pathogens[J]. mSphere, 2018, 3(5):e00539-18. [29] CHENG Y S, ROMA J S, SHEN M, et al. Identification of antifungal compounds against multidrug-resistant Candida auris utilizing a high-throughput drug-repurposing screen[J]. Antimicrob Agents Chemother, 2021, 65(4):e01305-20. [30] RUIZ-LINARES M, AGUADO-PEREZ B, BACA P,et al. Efficacy of antimicrobial solutions against polymicrobial root canal biofilm[J]. Int Endod J, 2017, 50(1):77-83. [31] KIM H S, WOO CHANG S, BAEK S H, et al. Antimicrobial effect of alexidine and chlorhexidine against Enterococcus faecalis infection[J]. Int J Oral Sci, 2013, 5(1):26-31. [32] WANG J, WANG P, DONG C, et al. Mechanisms of ebselen as a therapeutic and its pharmacology applications[J]. Future Med Chem, 2020, 12(23):2141-2160. [33] AGHAEI GHAREHBOLAGH S, IZADI A, TALEBI M, et al. New weapons to fight a new enemy: A systematic review of drug combinations against the drug-resistant fungus Candida auris[J]. Mycoses, 2021, 64(11):1308-1316. [34] BILLACK B, SANTORO M, LAU-CAM C. Growth inhibitory action of ebselen on fluconazole-resistant Candida albicans: role of the plasma membrane H+-ATPase[J]. Microb Drug Resist, 2009, 15(2):77-83. [35] M S, N R P, CHAKRABORTY A, et al. Proteomic profiling of Deinococcus radiodurans with response to thioredoxin reductase inhibitor and ionizing radiation treatment[J]. J Proteomics,2022,267:104697.DOI:10.1016/j.jprot.2022.104697. [36] GNAT S, LAGOWSKI D, DYLAG M, et al. In vitro activity of ebselen and diphenyl diselenide alone and in combination with drugs against trichophyton mentagrophytes strains[J]. Pharmaceutics, 2022, 14(6):1158. [37] AMIN S A, BANERJEE S, SINGH S, et al. First structure-activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: an endeavor on COVID-19 drug discovery[J]. Mol Divers, 2021, 25(3):1827-1838. [38] GOWRI M, JAYASHREE B, JEYAKANTHAN J, et al. Sertraline as a promising antifungal agent: Inhibition of growth and biofilm of Candida auris with special focus on the mechanism of action in vitro[J]. J Appl Microbiol, 2020, 128(2): 426-437. [39] COSTA SILVA R A, DA SILVA C R, DE ANDRADE NETO J B, et al. In vitro anti-Candida activity of selective serotonin reuptake inhibitors against fluconazole-resistant strains and their activity against biofilm-forming isolates[J]. Microbial pathogenesis, 2017, 107: 341-348. DOI:10.1016/j.micpath.2017.04.008. [40] MEI Y, JIANG T, ZOU Y, et al. FDA approved drug library screening identifies robenidine as a repositionable antifungal[J]. Front Microbiol, 2020, 11:996.DOI:10.3389/fmicb.2020.00996. [41] PIC E, BURGAIN A, SELLAM A. Repurposing the anthelminthic salicylanilide oxyclozanide against susceptible and clinical resistant Candida albicans strains[J]. Medical mycology, 2019, 57(3):387-390. [42] HAO W, QIAO D, HAN Y, et al. Identification of disulfiram as a potential antifungal drug by screening small molecular libraries[J]. J Infect Chemother, 2021, 27(5):696-701. |