[1] BRENNER M B, MCLEAN J, DIALYNAS D P,et al Identification of a putative second T-cell receptor[J]. Nature, 1986, 322(6075): 145-149. [2] DE SOUZA-SILVA T G, GOLLOB K J, DUTRA W O. T-cell receptor variable region usage in Chagas disease: A systematic review of experimental and human studies[J]. PLOS Neglected Trop Dis, 2022, 16(9): e0010546. [3] DAVIS M M, BJORKMAN P J. T-cell antigen receptor genes and T-cell recognition[J]. Nature, 1988, 334(6181): 395-402. [4] PAPADOPOULOU M, SANCHEZ G S, VERMIJLEN D. Innate and adaptive γδ T cells: How, when, and why[J]. Immunological Reviews, 2020, 298(1):99-116. [5] BRANDES M, WILLIMANN K, LANG A B, et al. Flexible migration program regulates γδ T-cell involvement in humoral immunity[J]. Blood, 2003, 102(10): 3693-3701. [6] BLEICHER P A, BALK S P, HAGEN S J, et al. Expression of murine CD1 on gastrointestinal epithelium[J]. Science, 1990, 250(4981): 679-682. [7] BONNEVILLE M, O'BRIEN R L, BORN W K. γδ T cell effector functions: A blend of innate programming and acquired plasticity[J]. Nature Reviews Immunology, 2010, 10(7): 467-478. [8] OUYANG W, KOLLS J K, ZHENG Y. The biological functions of T helper 17 cell effector cytokines in inflammation[J]. Immunity, 2008, 28(4): 454-467. [9] STARK M A, HUO Y, BURCIN T L, et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17[J]. IMMUNITY,2005, 22(3):285-294. [10] KASHEM S, RIEDL M, YAO C, et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity[J]. Immunity, 2015, 43(3): 515-526. [11] ROGERS, THOMAS, R, et al. Candida albicans stimulates IL-23 release by human dendritic cells and downstream IL-17 secretion by delta Vδ1 T cells[J]. J Immunol, 2015, 194(12);5953-5960. [12] FENOGLIO D, POGGI A, CATELLANI S, et al. Vδ1 T lymphocytes producing IFN-γ and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans[J]. Blood, 2009, 113(26): 6611-6618. [13] O’SHEA J J, PAUL W E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells[J]. Science, 2010, 327(5969): 1098-1102. [14] DELSING C E, GRESNIGT M S, LEENTJENS J, et al. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: A case series[J]. BMC infect Dis, 2014, 14(1): 1-12. [15] ELAHI S, PANG G, CLANCY R, et al. Cellular and cytokine correlates of mucosal protection in murine model of oral candidiasis[J]. Infect Immun, 2000, 68(10): 5771-5777. [16] CONTI H R, PETERSON A C, BRANE L, et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections[J]. Exp Med, 2014, 211(10): 2075-2084. [17] WORMLEY JR F L, STEELE C, WOZNIAK K, et al. Resistance of T-cell receptor δ-chain-deficient mice to experimental Candida albicans vaginitis[J]. J Exp Med, 2001, 69(11): 7162-7164. [18] MONIN L, USHAKOV D, ARNESEN H, et al. γδ T cells compose a developmentally regulated intrauterine population and protect against vaginal candidiasis[J]. Mucosal immunol, 2020, 13(6): 969-981. [19] FIDEL P L. Caution regarding interpretations of intrauterine γ/δ T cells in protection against experimental vaginal candidiasis[J]. Mucosal Immunol, 2021, 14(3): 774-775. [20] MONIN L, HAYDAY A. Response to "caution regarding interpretations of intrauterine γδ T cells in protection against experimental vaginal candidiasis"[J]. Mucosal Immunol, 2021, 14(3): 776-777. [21] PETERS B M, COLEMAN B M, WILLEMS H M, et al. The interleukin (IL) 17R/IL-22R signaling axis is dispensable for vulvovaginal candidiasis regardless of estrogen status[J]. J Infect Dis, 2020, 221(9): 1554-1563. [22] DEJIMA T, SHIBATA K, YAMADA H, et al. Protective role of naturally occurring interleukin-17A-producing γδ T cells in the lung at the early stage of systemic candidiasis in mice[J]. Infect Immun, 2011, 79(11): 4503-4510. [23] AMARSAIKHAN N, O'DEA E M, TSOGGEREL A, et al. Lung eosinophil recruitment in response to Aspergillus fumigatus is correlated with fungal cell wall composition and requires γδ T cells[J]. Microbes Infect, 2017, 19(7-8): 422-431. [24] LILLY L M, SCOPEL M, NELSON M P, et al. Eosinophil deficiency compromises lung defense against Aspergillus fumigatus[J]. Infect Immun, 2014, 82(3): 1315-1325. [25] ROMANI L, FALLARINO F, DE LUCA A, et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease[J]. Nature, 2008, 451(7175): 211-215. [26] MOSMANN T R, SAD S. The expanding universe of T-cell subsets: Th1, Th2 and more[J]. Immunol today, 1996, 17(3): 138-146. [27] QURESHI M H, ZHANG T, KOGUCHI Y, et al. Combined effects of IL-12 and IL-18 on the clinical course and local cytokine production in murine pulmonary infection with Cryptococcus neoformans[J]. Eur J Immunol, 1999, 29(2): 643-649. [28] UEZU K, KAWAKAMI K, MIYAGI K, et al. Accumulation of γδ T cells in the lungs and their regulatory roles in Th1 response and host defense against pulmonary infection with Cryptococcus neoformans[J]. Eur J Immunol, 2004, 172(12): 7629-7634. [29] KAWAKAMI K. Regulation by innate immune T lymphocytes in the host defense against pulmonary infection with Cryptococcus neoformans[J]. Jpn J Infect Dis,2004, 57(4): 137-145. [30] WOZNIAK K L, KOLLS J K, WORMLEY F L. Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased IL-17A production by gamma/delta T cells[J]. BMC immunology, 2012, 13(1): 1-11. [31] WOZNIAK K L, RAVI S, MACIAS S, et al. Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis[J]. PloS one, 2009, 4(9): e6854. [32] STANSELL J D, OSMOND D H, CHARLEBOIS E, et al. Predictors of Pneumocystis carinii pneumonia in HIV-infected persons. Pulmonary Complications of HIV Infection Study Group[J]. Am J Respir Crit Care Med, 1997, 155(1): 60-66. [33] KÄGI M K, FIERZ W, GROB P J, et al. High poportion of gamma-delta T cell receptor positive T cells in bronchoalveolar lavage and peripheral blood of HIV-infected patients with Pneumocystis carinii pneumonias[J]. Respiration, 1993, 60(3): 170-177. [34] HANANO R, KAUFMANN S H. Effect on parasite eradication of Pneumocystis carinii-specific antibodies produced in the presence or absence of CD4+ α β T lymphocytes[J]. Eur J Immunol, 1999, 29(8): 2464-2475. [35] STEELE C, ZHENG M, YOUNG E, et al. Increased host resistance against Pneumocystis carinii pneumonia in γδ T-cell-deficient mice: protective role of gamma interferon and CD8+ T cells[J]. Infect Immun, 2002, 70(9): 5208-5225. [36] DEEPE G S, GIBBONS R, WOODWARD E. Neutralization of endogenous granulocyte-macrophage colony-stimulating factor subverts the protective immune response to Histoplasma capsulatum[J]. J Immunol, 1999, 163(9): 4985-4993. [37] DEEPE JR G S, GIBBONS R S. Interleukins 17 and 23 influence the host response to Histoplasma capsulatum[J]. J Infect Dis, 2009, 200(1): 142-151. [38] WVTHRICH M, ERSLAND K, SULLIVAN T, et al. Fungi subvert vaccine T cell priming at the respiratory mucosa by preventing chemokine-induced influx of inflammatory monocytes[J]. Immunity, 2012, 36(4): 680-692. |