中国真菌学杂志 2023, Vol. 18 Issue (1): 90-96.
综述 上一篇
李敏1, 赵建平2
收稿日期:
2022-03-18
发布日期:
2023-03-17
通讯作者:
赵建平,E-mail:13947108183@126.com
E-mail:13947108183@126.com
作者简介:
李敏,女(汉族),在读硕士研究生,检验师.E-mail:limin19971211@163.com
Received:
2022-03-18
Published:
2023-03-17
中图分类号:
李敏, 赵建平. 深部真菌耐药机制及检测方法研究进展[J]. 中国真菌学杂志, 2023, 18(1): 90-96.
[1] FIRACATIVE C. Invasive fungal disease in humans:are we aware of the real impact[J]? Mem Inst Oswaldo Cruz, 2020, 115:e200430. DOI:10. 1590/0074-02760200430. [2] 朱丽芳. 深部真菌感染研究进展[J]. 现代医药卫生, 2017, 33(16):2484-2487. [3] CHOW E W L, PANG L M, WANG Y. From Jekyll to Hyde:the yeast-hyphal transition of Candida albicans[J]. Pathogens, 2021, 10(7):859. [4] SCHMIEDEL Y, ZIMMERLI S. Common invasive fungal diseases:an overview of invasive candidiasis, aspergillosis, cryptococcosis, and Pneumocystis pneumonia[J]. Swiss Med Wkly, 2016, 146:w14281. DOI:10. 4414/smw. 2016. 14281. [5] 段思蒙, 肖盟, 黄晶晶, 等. 2012年度侵袭性真菌耐药监测网(CHIF-NET)侵袭性酵母菌感染的分布特征[J]. 中国真菌学杂志, 2021, 16(4):234-242. [6] FRIAS-DE-LEON M G, HERNANDEZ-CASTRO R, CONDE-CUEVAS E, et al. Candida glabrata antifungal resistance and virulence factors, a perfect pathogenic combination[J]. Pharmaceutics, 2021, 13(10):1529. [7] VON LILIENFELD-TOAL M, WAGENER J, EINSELE H, et al. Invasive fungal infection[J]. Dtsch Arztebl Int, 2019, 116(16):271-278. [8] IYER K R, REVIE N M, FU C, et al. Treatment strategies for cryptococcal infection:challenges, advances and future outlook[J]. Nat Rev Microbiol, 2021, 19(7):454-466. [9] STONE N R, RHODES J, FISHER M C, et al. Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis[J]. J Clin Invest, 2019, 129(3):999-1014. [10] GARRE V. Recent advances and future directions in the understanding of mucormycosis[J]. Front Cell Infect Microbiol, 2022, 12:850581. DOI:10. 3389/fcimb. 2022. 850581. [11] CHANG Z, BILLMYRE R B, LEE S C, et al. Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides[J]. PLoS Genet, 2019, 15(2):e1007957. [12] OSMAN MOHAMED A, SULIMAN MOHAMED M, ABDELRAHMAN HUSSAIN M, et al. Detection of antifungal drug-resistant and ERG11 gene mutations among clinical isolates of Candida species isolated from Khartoum, Sudan[J]. F1000Res, 2020, 9:1050. DOI:10. 12688/f1000research. 24854. 2. [13] VU B G, MOYE-ROWLEY W S. Azole-resistant alleles of ERG11 in Candida glabrata trigger activation of the Pdr1 and Upc2A transcription factors[J]. Antimicrob Agents Chemother, 2022, 66(3):e0209821. [14] ZARE-KHAFRI M, ALIZADEH F, NOURIPOUR-SISAKHT S, et al. Inhibitory effect of magnetic iron-oxide nanoparticles on the pattern of expression of lanosterol 14 α-demethylase (ERG11) in fluconazole-resistant colonising isolate of Candida albicans[J]. IET nanobiotechnology, 2020, 14(5):375-381. [15] 纪凌云, 周爱萍, 马俊, 等. 白念珠菌唑类药物耐药机制研究进展[J]. 中国感染与化疗杂志, 2019, 19(2):218-223. [16] VILLASMIL M L, BARBOSA A D, CUNNINGHAM J L, et al. An Erg11 lanosterol 14 α-demethylase-Arv1 complex is required for Candida albicans virulence[J]. PLoS One, 2020, 15(7):e0235746. [17] PRASADR, NAIR R, BANERJEE A. Emerging mechanisms of drug resistance in Candida albicans [J]. Prog Mol Subcell Biol, 2019, 58:135-153. DOI:10. 1007/978-3-030-13035-0_6. [18] BHATTACHARYA S, SAE-TIA S, FRIES B C. Candidiasis and mechanisms of antifungal resistance[J]. Antibiotics (Basel), 2020, 9(6):312. [19] SATISH S, PERLIN D S. Echinocandin resistance in Aspergillus fumigatus has broad implications for membrane lipid perturbations that influence drug-target interactions[J]. Microbiol Insights, 2019, 12:1178636119897034. DOI:10. 1177/1178636119897034. [20] CASTANHEIRA M, DESHPANDE L M, DAVIS A P, et al. Monitoring antifungal resistance in a global collection of invasive yeasts and molds:application of CLSI epidemiological cutoff values and whole-genome sequencing analysis for detection of azole resistance in Candida albicans[J]. Antimicrob Agents Chemother, 2017, 61(10):e00906-17. [21] ENOCH D A, YANG H, ALIYU S H, et al. The changing epidemiology of invasive fungal infections[J]. Methods Mol Biol, 2017, 1508:17-65. DOI:10. 1007/978-1-4939-6515-1_2. [22] FARMAKIOTIS D, KONTOYIANNIS D P. Epidemiology of antifungal resistance in human pathogenic yeasts:current viewpoint and practical recommendations for management[J]. Int J Antimicrob Agents, 2017, 50(3):318-324. [23] NISHIMOTO A T, SHARMA C, ROGERS P D. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans[J]. J Antimicrob Chemother, 2020, 75(2):257-270. [24] LIU J Y, WEI B, WANG Y, et al. The H741D mutation in Tac1p contributes to the upregulation of CDR1 and CDR2 expression in Candida albicans[J]. Braz J Microbiol, 2020, 51(4):1553-1561. [25] FENG W, YANG J, YANG L, et al. Research of Mrr1, Cap1 and MDR1 in Candida albicans resistant to azole medications[J]. Exp Ther Med, 2018, 15(2):1217-1224. [26] SHI H, ZHANG Y, ZHANG M, et al. Molecular mechanisms of azole resistance in four clinical Candida albicans isolates[J]. Microb Drug Resist, 2021, 27(12):1641-1651. [27] 寿晓岚, 张继丰, 葛玉梅. 女性生殖道白色念珠菌唑类药物耐药转录因子编码基因UPC2的多态性研究[J]. 中国卫生检验杂志, 2021, 31(12):1434-1436. [28] LUNA-TAPIA A, WILLEMS H M E, PARKER J E, et al. Loss of Upc2p-inducible ERG3 transcription is sufficient to confer niche-specific azole resistance without compromising Candida albicans pathogenicity[J]. mBio, 2018, 9(3):e00225-18. [29] DENG K, JIANG W, JIANG Y, et al. ALS3 expression as an indicator for Candida albicans biofilm formation and drug resistance[J]. Front Microbiol, 2021, 12:655242. DOI:10. 3389/fmicb. 2021. 655242. [30] 王航, 阎澜. 白念珠菌耐药机制研究进展[J]. 中国真菌学杂志, 2018, 13(5):314-317. [31] YUAN R, TU J, SHENG C, et al. Effects of Hsp90 inhibitor ganetespib on inhibition of azole-resistant Candida albicans[J]. Front Microbiol, 2021, 12:680382. DOI:10. 3389/fmicb. 2021. 680382. [32] LOHSE M B, GULATI M, JOHNSON A D, et al. Development and regulation of single- and multi-species Candida albicans biofilms[J]. Nat Rev Microbiol, 2018, 16(1):19-31. [33] NYWENING A V, RYBAK J M, ROGERS P D, et al. Mechanisms of triazole resistance in Aspergillus fumigatus[J]. Environ Microbiol, 2020, 22(12):4934-4952. [34] CHEN P, LIU M, ZENG Q, et al. Uncovering new mutations conferring azole resistance in the Aspergillus fumigatus CYP51A gene[J]. Front Microbiol, 2019, 10:3127. DOI:10. 3389/fmicb. 2019. 03127. [35] MACEDO D, BRITO DEVOTO T, POLA S, et al. A novel combination of CYP51A mutations confers pan-azole resistance in Aspergillus fumigatus[J]. Antimicrob Agents Chemother, 2020, 64(8):e02501-19. DOI:10. 1128/AAC. 02501-19. [36] SHISHODIA S K, TIWARI S, SHANKAR J. Resistance mechanism and proteins in Aspergillus species against antifungal agents[J]. Mycology, 2019, 10(3):151-165. [37] MORELLI K A, KERKAERT J D, CRAMER R A. Aspergillus fumigatus biofilms:toward understanding how growth as a multicellular network increases antifungal resistance and disease progression[J]. PLoS Pathog, 2021, 17(8):e1009794. [38] BURKS C, DARBY A, GóMEZ LONDOñO L, et al. Azole-resistant Aspergillus fumigatus in the environment:identifying key reservoirs and hotspots of antifungal resistance[J]. PLoS Pathog, 2021, 17(7):e1009711. [39] RUDRAMURTHY S M, PAUL R A, CHAKRABARTI A, et al. Invasive aspergillosis by Aspergillus flavus:epidemiology, diagnosis, antifungal resistance, and management[J]. J Fungi(Basel), 2019, 5(3):55. [40] ZAFAR H, ALTAMIRANO S, BALLOUE R, et al. A titanic drug resistance threat in Cryptococcus neoformans[J]. Curr Opin Microbiol, 2019, 52:158-164. DOI:10. 1016/j. mib. 2019. 11. 001. [41] SAGATOVA A A, KENIYA M V, WILSON R K, et al. Triazole resistance mediated by mutations of a conserved active site tyrosine in fungal lanosterol 14 α-demethylase[J]. Sci Rep, 2016, 6:26213. DOI:10. 1038/srep26213. [42] NAGY G, KISS S, VARGHESE R, et al. Characterization of three pleiotropic drug resistance transporter genes and their participation in the azole resistance of Mucor circinelloides[J]. Front Cell Infect Microbiol, 2021, 11:660347. DOI:10. 3389/fcimb. 2021. 660347. [43] 武芳, 张叶毛, 赵建平, 等. 2012-2019年某医院临床分离念珠菌的耐药性监测[J]. 中国真菌学杂志, 2021, 16(5):341-345. [44] BASSETTI M, VENA A, BOUZA E, et al. Antifungal susceptibility testing in Candida, Aspergillus and Cryptococcus infections:are the MICs useful for clinicians[J]? Clin Microbiol Infect, 2020, 26(8):1024-1033. [45] FLORIO W, TAVANTI A, GHELARDI E, et al. MALDI-TOF MS applications to the detection of antifungal resistance:state of the art and future perspectives[J]. Front Microbiol, 2018, 9:2577. DOI:10. 3389/fmicb. 2018. 02577. [46] PAUL S, SINGH P, A S S, et al. Rapid detection of fluconazole resistance in Candida tropicalis by MALDI-TOF MS[J]. Med Mycol, 2018, 56(2):234-241. [47] DELAVY M, DOS SANTOS A R, HEIMAN C M, et al. Investigating antifungal susceptibility in Candida species with MALDI-TOF MS-based assays[J]. Front Cell Infect Microbiol, 2019, 9:19. DOI:10. 3389/fcimb. 2019. 00019. [48] VATANSHENASSAN M, BOEKHOUT T, LASS-FL RL C, et al. Proof of concept for MBT ASTRA, a rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based method to detect caspofungin resistance in Candida albicans and Candida glabrata[J]. J Clin Microbiol, 2018, 56(9):e00420-18. [49] GABALDóN T. Recent trends in molecular diagnostics ofyeast infections:from PCR to NGS[J]. FEMS Microbiol Rev, 2019, 43(5):517-547. [50] KIDD S E, CHEN S C, MEYER W, et al. A new age in molecular diagnostics for invasive fungal disease:are we ready[J]?Front Microbiol, 2019, 10:2903. DOI:10. 3389/fmicb. 2019. 02903. [51] MAENCHANTRARATH C, KHUMDEE P, SAMOSORNSUK S, et al. Investigation of fluconazole susceptibility to Candida albicans by MALDI-TOF MS and real-time PCR for CDR1, CDR2, MDR1 and ERG11[J]. BMC Microbiol, 2022, 22(1):153. [52] BUIL J B, ZOLL J, VERWEIJ P E, et al. Molecular detection of azole-resistant Aspergillus fumigatus in clinical samples[J]. Front Microbiol, 2018, 9:515. DOI:10. 3389/fmicb. 2018. 00515. [53] SPETTEL K, BAROUSCH W, MAKRISTATHIS A, et al. Analysis of antifungal resistance genes in Candida albicans and Candida glabrata using next generation sequencing[J]. PLoS One, 2019, 14(1):e0210397. [54] BISWAS C, CHEN S C, HALLIDAY C, et al. Whole genome sequencing of Candida glabrata for detection of markers of antifungal drug resistance[J]. J Vis Exp, 2017, (130):56714. DOI:10. 3791/56714. |
[1] | 房凌旭, 杨丽娜, 江川, 卢中一, 陈芳艳, 韩黎. 小GTPase蛋白在烟曲霉耐药性和致病力中作用的研究进展[J]. 中国真菌学杂志, 2023, 18(1): 49-52. |
[2] | 程鹏, 阿祥仁. 光滑念珠菌致病性和耐药机制研究进展[J]. 中国真菌学杂志, 2023, 18(1): 58-64. |
[3] | 刘佳存, 王瑞娜, 吕权真, 阎澜. 白念珠菌耐药机制研究进展[J]. 中国真菌学杂志, 2022, 17(4): 319-323. |
[4] | 李姝丽, 吴秀祯, 王志贤, 盛长忠, 周泽奇, 陈龙. 烟曲霉唑类药物耐药检测方法研究进展[J]. 中国真菌学杂志, 2022, 17(4): 335-338. |
[5] | 张欠欠, 封小川, 张凯玄, 元航. 白念珠菌对临床常用抗真菌药物耐药机制研究进展[J]. 中国真菌学杂志, 2022, 17(3): 251-254. |
[6] | 郭晓宇, 李小静. 白念珠菌生物膜相关基因对耐药性的影响[J]. 中国真菌学杂志, 2021, 16(6): 428-432. |
[7] | 华可心, 于淑颖, 徐英春. 白念珠菌生物被膜的研究进展[J]. 中国真菌学杂志, 2021, 16(1): 56-59. |
[8] | 朱红梅, 温海. 特比萘芬在皮下及深部真菌感染中的临床应用[J]. 中国真菌学杂志, 2020, 15(6): 374-377. |
[9] | 沈煜宸, 曹毅, 陶茂灿. 白念珠菌生物膜耐药机制及中药治疗的研究进展[J]. 中国真菌学杂志, 2019, 14(3): 176-179. |
[10] | 范欣, 黄晶晶, 侯欣, 肖盟, 张丽, 徐英春. 不同唑类药物体外诱导热带念珠菌耐药特征及其耐药机制研究[J]. 中国真菌学杂志, 2018, 13(4): 197-200. |
[11] | 何小羊, 任秋霞, 杨英. 2008~2017年我国深部真菌病原谱及流行特征国内文献系统分析[J]. 中国真菌学杂志, 2018, 13(4): 229-234. |
[12] | 侯欣, 徐英春, 赵玉沛. 棘白菌素在念珠菌中的耐药性[J]. 中国真菌学杂志, 2018, 13(1): 40-45. |
[13] | 童建波, 曾荣, 李岷. 烟曲霉生物膜研究进展[J]. 中国真菌学杂志, 2018, 13(1): 61-64. |
[14] | 余菁, 马越娥, 史玉玲. 卫凤莲真菌感染检测方法的研究进展[J]. 中国真菌学杂志, 2017, 12(4): 252-256. |
[15] | 孟玲宁, 刘锦燕, 李文静, 赵悦, 项明洁. 白念珠菌与生物膜相关的耐药机制[J]. 中国真菌学杂志, 2017, 12(2): 124-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||