[1] LATGE J P, CHAMILOS G. Aspergillus fumigatus and aspergillosis in 2019[J]. Clin Microbiol Rev, 2019, 33(1): e00140-18. [2] LESTRADE P P, BENTVELSEN R G, SCHAUWVLIEGHE A, et al. Voriconazole resistance and mortality in invasive aspergillosis: a multicenter retrospective cohort study[J]. Clin Infect Dis, 2019, 68(9): 1463-1471. [3] BORAL H, METIN B, DOGEN A, et al. Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis[J]. Fungal Genet Biol, 2018, 111: 92-107. DOI: 10.1016/j.fgb.2017.10.008. [4] ZHANG J, DEBETS A J M, VERWEIJ P E, et al. Azole-resistance development; how the Aspergillus fumigatus lifecycle defines the potential for adaptation[J]. J Fungi (Basel), 2021, 7(8). [5] DAUTT-CASTRO M, ROSENDO-VARGAS M, CASAS-FLORES S. The small GTPases in fungal signaling conservation and function[J]. Cells, 2021, 10(5): 1039. [6] ZHANG X, JIA X, TIAN S, et al. Role of the small GTPase Rho1 in cell wall integrity, stress response, and pathogenesis of Aspergillus fumigatus[J]. Fungal Genet Biol, 2018, 120: 30-41. DOI: 10.1016/j.fgb.2018.09.003 [7] WIEDERHOLD N P, VERWEIJ P E. Aspergillus fumigatus and pan-azole resistance: who should be concerned[J]? Curr Opin Infect Dis, 2020, 33(4): 290-297. [8] CHEN Y, DONG F, ZHAO J, et al. High azole resistance in Aspergillus fumigatus isolates from strawberry fields, China, 2018[J]. Emerg Infect Dis, 2020, 26(1): 81-89. [9] SIMON L, DEMEAUTIS T, DUPONT D, et al. Azole resistance in Aspergillus fumigatus isolates from respiratory specimens in Lyon University Hospitals, France: prevalence and mechanisms involved[J]. Int J Antimicrob Agents, 2021, 58(6): 106447. [10] CHEN P, LIU J, ZENG M, et al. Exploring the molecular mechanism of azole resistance in Aspergillus fumigatus[J]. J Mycol Med, 2020, 30(1): 100915. [11] 张曦. 小G蛋白Rho1在烟曲霉细胞壁完整性、应激和致病性中的功能研究[D]. 北京:军事科学院, 2019. [12] BORAH S, SHIVARATHRI R, KAUR R. The Rho1 GTPase-activating protein CgBem2 is required for survival of azole stress in Candida glabrata[J].J Biol Chem, 2011, 286(39): 34311-34324. [13] MOUNT H O, REVIE N M, TODD R T, et al. Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs[J]. PLoS Genet, 2018, 14(4): e1007319. [14] PAPON N, MORIO F, SANGLARD D. Signaling pathways governing the caspofungin paradoxical effect in Aspergillus fumigatus[J]. mBio, 2020, 11(4): e01816-20. [15] VALERO C, COLABARDINI A C, CHIARATTO J, et al. Aspergillus fumigatus transcription factors involved in the caspofungin paradoxical effect[J]. mBio, 2020, 11(3): e00816-20. [16] CRAMER R A JR,PERFECT B Z, PINCHAI N, et al. Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus[J]. Eukaryot Cell, 2008, 7(7): 1085-97. [17] JUVVADI P R, LAMOTH F, STEINBACH W J. Calcineurin-mediated regulation of hyphal growth, septation, and virulence in Aspergillus fumigatus[J]. Mycopathologia, 2014, 178(5-6): 341-348. [18] FORTWENDEL J R, JUVVADI P R, PINCHAI N, et al. Differential effects of inhibiting chitin and 1,3-{beta}-D-glucan synthesis in ras and calcineurin mutants of Aspergillus fumigatus[J]. Antimicrob Agents Chemother, 2009, 53(2): 476-482. [19] ARKOWITZ R A, BASSILANA M. Regulation of hyphal morphogenesis by Ras and Rho small GTPases[J]. Fungal Biology Reviews, 2015, 29(1): 7-19. [20] ROMAN E, COTTIER F, ERNST J F, et al. Msb2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans[J]. Eukaryot Cell, 2009, 8(8): 1235-1249. [21] THAMMAHONG A, CAFFREY-CARD A K, DHINGRA S, et al. Aspergillus fumigatus trehalose-regulatory subunit homolog moonlights to mediate cell wall homeostasis through modulation of chitin synthase activity[J]. mBio, 2017, 8(2): e00056-17. [22] PIANALTO K M, BILLMYRE R B, TELZROW C L, et al. Roles for stress response and cell wall biosynthesis pathways in caspofungin tolerance in Cryptococcus neoformans[J]. Genetics, 2019, 213(1): 213-227. [23] KWON-CHUNG K J, SUGUI J A. Aspergillus fumigatus—what makes the species a ubiquitous human fungal pathogen[J]?PLoS pathogens, 2013, 9(12): e1003743. [24] JIA X, ZHANG X, HU Y, et al. Role of actin depolymerizing factor cofilin in Aspergillus fumigatus oxidative stress response and pathogenesis[J]. Curr Genet, 2018, 64(3): 619-634. [25] LU Z, JIA X, CHEN Y, et al. Identification and characterization of key charged residues in the cofilin protein involved in azole susceptibility, apoptosis, and virulence of Aspergillus fumigatus[J]. Antimicrob Agents Chemother, 2018, 62(5): e01659-17. [26] HARRIS S D. Cdc42/Rho GTPases in fungi: variations on a common theme[J]. Mol Microbiol, 2011, 79(5): 1123-1127. [27] NORTON T S, Fortwendel J R. Control of Ras-mediated signaling in Aspergillus fumigatus[J]. Mycopathologia, 2014, 178(5-6): 325-330. [28] POWERS-FLETCHER M V, FENG X, KRISHNAN K, et al. Deletion of the sec4 homolog srgA from Aspergillus fumigatus is associated with an impaired stress response, attenuated virulence and phenotypic heterogeneity[J]. PLoS One, 2013, 8(6): e66741. [29] Martin-Vicente A, Souza A C O, Nywening A V, et al. Overexpression of the Aspergillus fumigatus small GTPase, RsrA, promotes polarity establishment during germination[J]. J Fungi (Basel), 2020, 6(4): 285. [30] LI H, BARKER B M, GRAHL N, et al. The small GTPase RacA mediates intracellular reactive oxygen species production, polarized growth, and virulence in the human fungal pathogen Aspergillus fumigatus[J]. Eukaryot Cell, 2011, 10(2): 174-186. [31] VALIANTE V, HEINEKAMP T, JAIN R, et al. The mitogen-activated protein kinase MpkA of Aspergillus fumigatus regulates cell wall signaling and oxidative stress response[J]. Fungal Genet Biol, 2008, 45(5): 618-627. [32] MANFIOLLI A O, MATTOS E C, DE ASSIS L J, et al. Aspergillus fumigatus high osmolarity glycerol mitogen activated protein kinases SakA and MpkC physically interact during osmotic and cell wall stresses[J]. Front Microbiol, 2019, 10: 918. DOI: 10.3389/fmicb.2019.00918. |