中国真菌学杂志 2022, Vol. 17 Issue (6): 522-528.
综述 上一篇
宁雅婷1,2,3, 张丽1,3, 孙天舒3,4, 徐英春1,3
收稿日期:
2021-08-09
发布日期:
2023-01-04
通讯作者:
徐英春,E-mail:xycpumch@139.com
E-mail:xycpumch@139.com
作者简介:
宁雅婷,女(汉族),博士研究生在读.E-mail:ningyating1997@163.com
基金资助:
Received:
2021-08-09
Published:
2023-01-04
中图分类号:
宁雅婷, 张丽, 孙天舒, 徐英春. 近平滑念珠菌毒力调控和耐药机制研究进展[J]. 中国真菌学杂志, 2022, 17(6): 522-528.
[1] KAKEYA H, YAMADA K, KANEKO Y, et al. National trends in the distribution of Candida Species causing candidemia in japan from 2003 to 2014[J]. Med Mycol J, 2018,59(1):E19-E22. [2] PFALLER M A, ANDES D R, DIEKEMA D J, et al. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients:data from the Prospective Antifungal Therapy (PATH) registry 2004-2008[J]. PLoS One, 2014,9(7):e101510. [3] XIAO M, CHEN S C, KONG F, et al. Distribution and antifungal susceptibility of Candida species causing candidemia in China:an update from the CHIF-NET study[J]. J Infect Dis, 2020,221(Suppl 2):S139-S147. [4] XIAO M, SUN Z Y, KANG M, et al. Five-Year national surveillance of invasive candidiasis:species distribution and azole susceptibility from the China hospital invasive fungal surveillance net (CHIF-NET) study[J]. J Clin Microbiol, 2018,56(7):e00577-18. [5] PAMMI M, HOLLAND L, BUTLER G, et al. Candida parapsilosis is a significant neonatal pathogen:a systematic review and meta-analysis[J]. Pediatr Infect Dis J, 2013,32(5):e206-e216. [6] ZHANG L, YU S Y, CHEN S C, et al. Molecular characterization of Candida parapsilosis by microsatellite typing and emergence of clonal antifungal drug resistant strains in a multicenter surveillance in China[J]. Front Microbiol, 2020,11:1320. [7] GARCIA-EFFRON G, KATIYAR S K, PARK S, et al. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility[J]. Antimicrob Agents Chemother, 2008,52(7):2305-2312. [8] ARASTEHFAR A, DANESHNIA F, HILMIOGLU-POLAT S, et al. First report of candidemia clonal outbreak caused by emerging fluconazole-resistant Candida parapsilosis isolates harboring Y132F and/or Y132F+K143R in turkey[J]. Antimicrob Agents Chemother, 2020,64(10):e01001-20. [9] ALCOCEBA E, GOMEZ A, LARA-ESBRI P, et al. Fluconazole-resistant Candida parapsilosis clonally related genotypes:first report proving the presence of endemic isolates harbouring the Y132FERG11 gene substitution in Spain[J]. Clin Microbiol Infect, 2022,S1198-743X(22)00102-1. doi:10.1016/j.cmi. [10] SINGH A, SINGH P K, de GROOT T, et al. Emergence of clonal fluconazole-resistant Candida parapsilosis clinical isolates in a multicentre laboratory-based surveillance study in India[J]. J Antimicrob Chemother, 2019,74(5):1260-1268. [11] DEMIRCI-DUARTE S, ARIKAN-AKDAGLI S, GULMEZ D. Species distribution, azole resistance and related molecular mechanisms in invasive Candida parapsilosis complex isolates:Increase in fluconazole resistance in 21 years[J]. Mycoses, 2021,64(8):823-830. [12] MORIO F, LOMBARDI L, BINDER U, et al. Precise genome editing using a CRISPR-Cas9 method highlights the role of CoERG11 amino acid substitutions in azole resistance in Candida orthopsilosis[J]. J Antimicrob Chemother, 2019,74(8):2230-2238. [13] BRANCO J, OLA M, SILVA R M, et al. Impact of ERG3 mutations and expression of ergosterol genes controlled by UPC2 andNDT80 in Candida parapsilosis azole resistance[J]. Clin Microbiol Infect, 2017,23(8):571-575. [14] SELLAM A, TEBBJI F, NANTEL A. Role of Ndt80p in sterol metabolism regulation and azole resistance in Candida albicans[J]. Eukaryot Cell, 2009,8(8):1174-1183. [15] SILVA A P, MIRANDA I M, GUIDA A, et al. Transcriptional profiling of azole-resistant Candida parapsilosis strains[J]. Antimicrob Agents Chemother, 2011,55(7):3546-3556. [16] BERKOW E L, MANIGABA K, PARKER J E, et al. Multidrug transporters and alterations in sterol biosynthesis contribute to azole antifungal resistance in Candida parapsilosis[J]. Antimicrobial Agents and Chemotherapy, 2015,59(10):5942-5950. [17] CHOI Y J, KIM Y J, YONG D, et al. Fluconazole-resistant Candida parapsilosis bloodstream isolates with Y132F mutation inERG11 gene, South Korea[J]. Emerg Infect Dis, 2018, 24(9):1768-1770. [18] PAPP C, BOHNER F, KOCSIS K, et al. Triazole evolution of Candida parapsilosis results in cross-resistance to other antifungal drugs, influences stress responses, and alters virulence in an antifungal drug-dependent manner[J]. mSphere, 2020,5(5):e00821-20. [19] GROSSMAN N T, PHAM C D, CLEVELAND A A, et al. Molecular mechanisms of fluconazole resistance in Candida parapsilosis isolates from a U.S. surveillance system[J]. Antimicrob Agents Chemother, 2015,59(2):1030-1037. [20] BRANCO J, SILVA A P, SILVA R M, et al. Fluconazole and voriconazole resistance in Candida parapsilosis is conferred by gain-of-function mutations inMRR1transcription factor gene[J]. Antimicrob Agents Chemother, 2015,59(10):6629-6633. [21] ASADZADEH M, DASHTI M, AHMAD S, et al. Whole-genome and targeted-amplicon sequencing of fluconazole-susceptible and-resistant Candida parapsilosis isolates from Kuwait reveals a previously undescribed N1132D polymorphism inCDR1[J]. Antimicrob Agents Chemother, 2021,65(2):e01633-20. [22] PERLIN D S. Mechanisms of echinocandin antifungal drug resistance[J]. Annals of the New York Academy of Sciences, 2015,1354(1):1-11. [23] ARASTEHFAR A, DANESHNIA F, HILMIOGLU-POLAT S, et al. Genetically related micafungin-resistant Candida parapsilosis blood isolates harbouring novel mutation R658G in hotspot 1 of Fks1p:a new challenge[J]? J Antimicrob Chemother, 2021,76(2):418-422. [24] PAPP C, KOCSIS K, TOTH R, et al. Echinocandin-induced microevolution of Candida parapsilosis influences virulence and abiotic stress tolerance[J]. mSphere, 2018,3(6):e00547-18. [25] MARTI-CARRIZOSA M, SANCHEZ-REUS F, MARCH F, et al. Implication of Candida parapsilosisFKS1 and FKS2 mutations in reduced echinocandin susceptibility[J]. Antimicrob Agents Chemother, 2015,59(6):3570-3573. [26] CHAMILOS G, LEWIS R E, KONTOYIANNIS D P. Inhibition of Candida parapsilosis mitochondrial respiratory pathways enhances susceptibility to caspofungin[J]. Antimicrob Agents Chemother, 2006,50(2):744-747. [27] RYBAK J M, DICKENS C M, PARKER J E, et al. Loss of C-5 sterol desaturase activity results in increased resistance to azole and echinocandin antifungals in a clinical isolate of Candida parapsilosis[J]. Antimicrob Agents Chemother, 2017,61(9):e00651-17. [28] CILLINGOVA A, ZEMAN I, TOTH R, et al. Eukaryotic transporters for hydroxyderivatives of benzoic acid[J]. Sci Rep, 2017,7(1):89-98. [29] SEIDENFELD S M, COOPER B H, SMITH J W, et al. Amphotericin B tolerance:a characteristic of Candida parapsilosis not shared by other Candida species[J]. J Infect Dis, 1983,147(1):116-119. [30] HOEPRICH P D, INGRAHAM J L, KLEKER E, et al. Development of resistance to 5-fluorocytosine in Candida parapsilosis during therapy[J]. J Infect Dis, 1974,130(2):112-118. [31] KATRAGKOU A, CHATZIMOSCHOU A, SIMITSOPOULOU M, et al. Differential activities of newer antifungal agents against Candida albicans and Candida parapsilosis biofilms[J]. Antimicrob Agents Chemother, 2008,52(1):357-360. [32] KUHN D M, GEORGE T, CHANDRA J, et al. Antifungal susceptibility of Candida biofilms:unique efficacy of amphotericin B lipid formulations and echinocandins[J]. Antimicrob Agents Chemother, 2002,46(6):1773-1780. [33] LAFFEY S F, BUTLER G. Phenotype switching affects biofilm formation by Candida parapsilosis[J]. Microbiology, 2005,151(Pt 4):1073-1081. [34] TOTH R, TOTH A, PAPP C, et al. Kinetic studies of Candida parapsilosis phagocytosis by macrophages and detection of intracellular survival mechanisms[J]. Front Microbiol, 2014,5:633. [35] MORENO-MARTINEZ A E, GOMEZ-MOLERO E, SANCHEZ-VIROSTA P, et al. High biofilm formation of non-smooth Candida parapsilosis correlates with increased incorporation of GPI-modified wall adhesins[J]. Pathogens, 2021,10(4):493. [36] GOMEZ-MOLERO E, WILLIS J R, DUDAKOVA A, et al. Phenotypic variability in a coinfection with three independent Candida parapsilosis lineages[J]. Front Microbiol, 2020,11:1994. [37] PEREZ-GARCIA L A, CSONKA K, FLORES-CARREON A, et al. Role of protein glycosylation in Candida parapsilosis cell wall integrity and host interaction[J]. Front Microbiol, 2016,7:306. [38] CONNOLLY L A, RICCOMBENI A, GROZER Z, et al. The APSES transcription factor Efg1 is a global regulator that controls morphogenesis and biofilm formation in Candida parapsilosis[J]. Mol Microbiol, 2013,90(1):36-53. [39] HOLLAND L M, SCHRODER M S, TURNER S A, et al. Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans[J]. PLoS Pathog, 2014,10(9):e1004365. [40] DING C, VIDANES G M, MAGUIRE S L, et al. Conserved and divergent roles of Bcr1 and CFEM proteins in Candida parapsilosis and Candida albicans[J]. PLoS One, 2011,6(12):e28151. [41] TOTH R, CABRAL V, THUER E, et al. Investigation of Candida parapsilosis virulence regulatory factors during host-pathogen interaction[J]. Sci Rep, 2018,8(1):1346. [42] BRANCO J, MARTINS-CRUZ C, RODRIGUES L, et al. The transcription factor Ndt80 is a repressor of Candida parapsilosis virulence attributes[J]. Virulence, 2021,12(1):601-614. [43] CHAKRABORTY T, TOTH Z, TOTH R, et al. Iron Metabolism, pseudohypha production, and biofilm formation through a multicopper oxidase in the human-pathogenic fungus Candida parapsilosis[J]. mSphere, 2020,5(3):e00227-20. [44] SILVA-DIAS A, MIRANDA I M, BRANCO J, et al. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility:relationship among Candida spp[J]. Front Microbiol, 2015,6:205. [45] ZOPPO M, FIORENTINI F, RIZZATO C, et al. Role ofCpALS4790 and CpALS0660in Candida parapsilosis virulence:evidence from a murine model of vaginal candidiasis[J]. J Fungi (Basel), 2020,6(2):86. [46] ZOPPO M, Di LUCA M, FRANCO M, et al.CpALS4770 and CpALS4780contribution to the virulence of Candida parapsilosis[J]. Microbiol Res, 2020,231:126351. [47] NEALE M N, GLASS K A, LONGLEY S J, et al. Role of the inducible adhesin CpAls7 in binding of Candida parapsilosis to the extracellular matrix under fluid shear[J]. Infect Immun, 2018,86(4):e00892-17. [48] GACSER A, TROFA D, SCHAFER W, et al. Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence[J]. J Clin Invest, 2007,117(10):3049-3058. [49] NUNEZ-BELTRAN A, LOPEZ-ROMERO E, CUELLAR-CRUZ M. Identification of proteins involved in the adhesion of Candida species to different medical devices[J]. Microb Pathog, 2017,107:293-303. [50] KUHN D M, CHANDRA J, MUKHERJEE P K, et al. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces[J]. Infect Immun, 2002,70(2):878-888. [51] SOLDINI S, POSTERARO B, VELLA A, et al. Microbiologic and clinical characteristics of biofilm-forming Candida parapsilosis isolates associated with fungaemia and their impact on mortality[J]. Clin Microbiol Infect, 2018,24(7):771-777. [52] FEKKAR A, BLAIZE M, BOUGLE A, et al. Hospital outbreak of fluconazole-resistant Candida parapsilosis:arguments for clonal transmission and long-term persistence[J]. Antimicrob Agents Chemother, 2021,65(5):e02036-20. [53] GOMEZ-MOLERO E, DE-LA-PINTA I, FERNANDEZ-PEREIRA J, et al. Candida parapsilosis colony morphotype forecasts biofilm formation of clinical isolates[J]. J Fungi (Basel), 2021,7(1):33.. [54] SINGH D K, NEMETH T, PAPP A, et al. Functional characterization of secreted aspartyl proteases in Candida parapsilosis[J]. mSphere, 2019,4(4):e00484-19. [55] PAL S E, TOTH R, NOSANCHUK J D, et al. A Candida parapsilosis overexpression collection reveals genes required for pathogenesis[J]. J Fungi (Basel), 2021,7(2):97. [56] SANCHEZ-FRESNEDA R, MUNOZ-MEGIAS M L, YAGUE G, et al. Lack of functional trehalase activity in Candida parapsilosis increases susceptibility to itraconazole[J]. J Fungi (Basel), 2022,8(4):371. [57] TREVINO-RANGEL R J, GONZALEZ J G, GONZALEZ G M. Aspartyl proteinase, phospholipase, esterase and hemolysin activities of clinical isolates of the Candida parapsilosis species complex[J]. Med Mycol, 2013,51(3):331-335. [58] HORVATH P, NOSANCHUK J D, HAMARI Z, et al. The identification of gene duplication and the role of secreted aspartyl proteinase 1 in Candida parapsilosis virulence[J]. J Infect Dis, 2012,205(6):923-933. [59] SILVA S, HENRIQUES M, OLIVEIRA R, et al. Characterization of Candida parapsilosis infection of an in vitro reconstituted human oral epithelium[J]. Eur J Oral Sci, 2009,117(6):669-675. [60] TOTH R, TOTH A, VAGVOLGYI C, et al. Candida parapsilosis secreted lipase as an important virulence factor[J]. Curr Protein Pept Sci, 2017,18(10):1043-1049. [61] NEMETH T, TOTH A, SZENZENSTEIN J, et al. Characterization of virulence properties in the C. parapsilosis sensu lato species[J]. PLoS One, 2013,8(7):e68704. [62] GACSER A, TROFA D, SCHAFER W, et al. Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence[J]. J Clin Invest, 2007,117(10):3049-3058. [63] TOTH A, NEMETH T, CSONKA K, et al. Secreted Candida parapsilosis lipase modulates the immune response of primary human macrophages[J]. Virulence, 2014,5(4):555-562. [64] JAN A H, SUBILEAU M, DEYRIEUX C, et al. Elucidation of a key position for acyltransfer activity in Candida parapsilosis lipase/acyltransferase (CpLIP2) and in pseudozyma antarctica lipase A (CAL-A) by rational design[J]. Biochim Biophys Acta, 2016,1864(2):187-194. [65] TROFA D, AGOVINO M, STEHR F, et al. Acetylsalicylic acid (aspirin) reduces damage to reconstituted human tissues infected with Candida species by inhibiting extracellular fungal lipases[J]. Microbes Infect, 2009,11(14-15):1131-1139. [66] GACSER A, SCHAFER W, NOSANCHUK J S, et al. Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models[J]. Fungal Genet Biol, 2007,44(12):1336-1341. [67] PICHOVA I, PAVLICKOVA L, DOSTAL J, et al. Secreted aspartic proteases of Candida albicans, Candida tropicalis, Candida parapsilosis and Candida lusitaniae. Inhibition with peptidomimetic inhibitors[J]. Eur J Biochem, 2001,268(9):2669-2677. |
[1] | 房凌旭, 杨丽娜, 江川, 卢中一, 陈芳艳, 韩黎. 小GTPase蛋白在烟曲霉耐药性和致病力中作用的研究进展[J]. 中国真菌学杂志, 2023, 18(1): 49-52. |
[2] | 王思琦, 马彦. 烟曲霉生物膜耐药性研究进展[J]. 中国真菌学杂志, 2023, 18(1): 53-57. |
[3] | 程鹏, 阿祥仁. 光滑念珠菌致病性和耐药机制研究进展[J]. 中国真菌学杂志, 2023, 18(1): 58-64. |
[4] | 郭慧阳, 王彤, 姜明, 胡惠萍. 生物源抑制白念珠菌活性物质的研究进展[J]. 中国真菌学杂志, 2023, 18(1): 80-85. |
[5] | 李敏, 赵建平. 深部真菌耐药机制及检测方法研究进展[J]. 中国真菌学杂志, 2023, 18(1): 90-96. |
[6] | 张伶玲, 刘泉波. 儿童念珠菌血症的临床特点及耐药性分析[J]. 中国真菌学杂志, 2022, 17(6): 467-471,481. |
[7] | 赵旭初, 胡爱玲, 王东, 衡媛, 王娜. 232株热带念珠菌感染的临床特点及菌株耐药性分析[J]. 中国真菌学杂志, 2022, 17(6): 472-475,489. |
[8] | 张舒, 戴榕辰, 季聪华, 耿圆圆, 李若瑜, 龚杰. CRISPR/Cas9基因组编辑技术在病原真菌耐药性研究中的应用[J]. 中国真菌学杂志, 2022, 17(6): 508-512. |
[9] | 洪翩翩, 陈玉萍, 郑楠, 刘沐桑. 烟曲霉cyp51A基因序列BLAST数据库的建立[J]. 中国真菌学杂志, 2022, 17(5): 353-358. |
[10] | 胡爱玲, 衡媛, 赵旭初, 王东, 佟钊, 杜雅丽, 赵云旺, 王娜. 医院念珠菌尿路感染菌株分布及耐药性分析[J]. 中国真菌学杂志, 2022, 17(5): 380-384. |
[11] | 解雨飞, 周培茹, 华红, 刘晓松. 植物活性成分抗念珠菌作用机制研究进展[J]. 中国真菌学杂志, 2022, 17(4): 315-318,329. |
[12] | 刘佳存, 王瑞娜, 吕权真, 阎澜. 白念珠菌耐药机制研究进展[J]. 中国真菌学杂志, 2022, 17(4): 319-323. |
[13] | 魏天琦, 刘沐桑. 蛋白质组学在真菌生物膜中的应用研究进展[J]. 中国真菌学杂志, 2022, 17(4): 324-329. |
[14] | 李姝丽, 吴秀祯, 王志贤, 盛长忠, 周泽奇, 陈龙. 烟曲霉唑类药物耐药检测方法研究进展[J]. 中国真菌学杂志, 2022, 17(4): 335-338. |
[15] | 杨之辉, 李若瑜. 浅部真菌感染中的抗真菌药物治疗进展[J]. 中国真菌学杂志, 2022, 17(4): 339-348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||