中国真菌学杂志 2022, Vol. 17 Issue (5): 425-430.
李肃静1, 皇幼明2, 唐慧1, 崔虹2, 滕艳2, 陶小华2, 樊一斌1,2
收稿日期:
2022-03-10
发布日期:
2022-10-26
通讯作者:
樊一斌,E-mail:fanyibin@hmc.edu.cn
E-mail:fanyibin@hmc.edu.cn
作者简介:
李肃静,女(汉族),硕士研究生在读.E-mail:lisuky1217@163.com
基金资助:
Received:
2022-03-10
Published:
2022-10-26
中图分类号:
李肃静, 皇幼明, 唐慧, 崔虹, 滕艳, 陶小华, 樊一斌. T淋巴细胞在新生隐球菌感染中的防御作用[J]. 中国真菌学杂志, 2022, 17(5): 425-430.
[1] MYER F L, KRONSTAD J W. Cryptococcus neoformans[J]. Trends Microbiol,2020,28(2):163-164. [2] SINGH N, HUSAIN S, DE VERA M, et al. Cryptococcus neoformans infection in patients with cirrhosis, including liver transplant candidates[J]. Medicine(Baltimore),2004,83(3):188-192. [3] 唐博,石永进,刘微,等. 淋巴结成纤维网状细胞调节T细胞定位和适应性免疫应答研究进展[J]. 中国免疫学杂志,2017,33(3):453-456. [4] NELSON B N, HAWKINS A N, WOZNIAK K L. Pulmonary macrophage and dendritic cell responses to Cryptococcus neoformans[J]. Front Cell Infect Microbiol,2020,10:37. [5] TSENG H, HUANG T, WU A Y, et al. How Cryptococcus interacts with the blood-brain barrier[J]. Future Microbiol,2015,10(10):1669-1682. [6] MUKAREMERA L, NIELSEN K. Adaptive immunity to Cryptococcus neoformans infections[J]. J Fungi (Basel),2017,3(4):64. [7] 刘修莉,郝婷婷,李云霄,等. Th1/Th2细胞与肿瘤微环境[J]. 实用癌症杂志,2015,30(9):1415-1417. [8] UICKER W C, MCCRACKEN J P, BUCHANAN K L. Role of CD4+ T cells in a protective immune response against Cryptococcus neoformans in the central nervous system[J]. Med Mycol,2006,44(1):1-11. [9] NEAL L M, XING E, XU J, et al. CD4(+) T cells orchestrate lethal immune pathology despite fungal clearance during Cryptococcus neoformans meningoencephalitis[J]. mBio,2017,8(6):e0145-17. [10] MCQUISTON T J, WILLIAMSON P R. Paradoxical roles of alveolar macrophages in the host response to Cryptococcus neoformans[J]. J Infect Chemother,2012,18(1):1-9. [11] ZHOU Q, GAULT R A, KOZEL T R, et al. Immunomodulation with CD40 stimulation and interleukin-2 protects mice from disseminated cryptococcosis[J]. Infect Immun,2006,74(4):2161-2168. [12] ZHOU Q, GAULT R A, KOZEL T R, et al. Protection from direct cerebral cryptococcus infection by interferon-gamma-dependent activation of microglial cells[J]. J Immunol,2007,178(9):5753-5761. [13] KAWAKAMI K, QURESHI M H, ZHANG T, et al. Involvement of endogenously synthesized interleukin (IL)-18 in the protective effects of IL-12 against pulmonary infection with Cryptococcus neoformans in mice[J]. FEMS Immunol Med Mic,2000,27(3):191-200. [14] LEOPOLD WAGER C M, HOLE C R, WOZNIAK K L, et al. STAT1 signaling within macrophages is required for antifungal activity against Cryptococcus neoformans[J]. Infect Immun,2015,83(12):4513-4527. [15] LEOPOLD WAGER C M, HOLE C R, WOZNIAK K L, et al. STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice[J]. J Immunol,2014,193(8):4060-4071. [16] 周林甫,康涛,孙东,等. 隐球菌性脑膜炎及病毒性脑炎患者脑脊液IL-6、IL-10和TNF-α含量检测及其临床意义[J]. 神经损伤与功能重建,2011,6(2):114-117. [17] FA Z, XU J, YI J, et al. TNF-α-producing Cryptococcus neoformans exerts protective effects on host defenses in murine pulmonary cryptococcosis[J]. Front Immunol,2019,10:1725. [18] KALEM M C, HUMBY M S, WOHIFERT E A, et al. Cryptococcus neoformans coinfection dampens the TNF-α response in HIV-1-infected human THP-1 macrophages[J]. Msphere,2021,6(2):e00213-21. [19] BRARADLEY J R. TNF-mediated inflammatory disease[J]. J Pathol,2008,214(2):149-160. [20] TSIODRAS S, SAMONIS G, BOUMPAS D T, et al. Fungal infections complicating tumor necrosis factor alpha blockade therapy[J]. Mayo Clin Proc,2008,83(2):181-194. [21] ELLERIN T, RUBIN R H, WEINBLATT M E. Infections and anti-tumor necrosis factor alpha therapy[J]. Arthritis Rheum-US,2003,48(11):3013-3022. [22] HOAG K A, LIPSCOMB M F, IZZO A A, et al. IL-12 and IFN-gamma are required for initiating the protective Th1 response to pulmonary cryptococcosis in resistant C.B-17 mice[J]. Am J Resp Cell Mol,1997,17(6):733-739. [23] FIRACATIVE C, GRESSLER A E, SCHUBERT K, et al. Identification of T helper (Th)1- and Th2-associated antigens of Cryptococcus neoformans in a murine model of pulmonary infection[J]. Sci Rep-UK,2018,8(1):2681. [24] XU L, GUO Y, ZHAO Y, et al. Chemokine and cytokine cascade caused by skewing of the Th1-Th2 balance is associated with high intracranial pressure in HIV-associated cryptococcal meningitis[J]. Mediat Inflamm, 2019, 2019:2053958. [25] MVLLER U, STENZEL W, KOHLER G, et al. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans[J]. J Immunol,2007,179(8):5367-5377. [26] 陈天宇,秦少云,姜克家. IL-5、IL-10及FENO三种炎性标记物诊断成人支气管哮喘的临床价值[J]. 临床肺科杂志,2016,21(10):1887-1889. [27] HUFFNAGLE G B, BOYD M B, STREET N E, et al. IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice (C57BL/6)[J]. J Immunol,1998,160(5):2393-2400. [28] 赵乙汜,余应喜,林时辉,等. T细胞免疫在脓毒症继发侵袭性真菌感染中作用的研究进展[J]. 上海交通大学学报(医学版),2019,39(11):1325-1328. [29] WIESNER D L, SPECHT C A, LEE C K, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection[J]. Plos pathog,2015,11(3):e1004701. [30] DAVIS M J, TSANG T M, QIU Y, et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection[J]. mBio,2013,4(3):e213-e264. [31] SHOHAM S, HUANG C, CHEN J M, et al. Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule[J]. J Immunol,2001,166(7):4620-4626. [32] OSTERHOLZER J J, SURANA R, MILAM J E, et al. Cryptococcal urease promotes the accumulation of immature dendritic cells and a non-protective T2 immune response within the lung[J]. Am J Pathol,2009,174(3):932-943. [33] QIU Y, DAVIS M J, DAYRIT J K, et al. Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice[J]. Plos one,2012,7(10):e47853. [34] MIYOSHI S, ODA N, GION Y, et al. Exacerbation of pulmonary cryptococcosis associated with enhancement of Th2 response in the postpartum period[Z]. 2021.27,1248-1250. [35] FIRACATIVE C, GRESSLER A E, SCHUBERT K, et al. Identification of T helper (Th)1- and Th2-associated antigens of Cryptococcus neoformans in a murine model of pulmonary infection[J]. Sci Rep-UK,2018,8(1):2681. [36] LAROCQUE-DE-FREITAS I F, ROCHA J D B, NUNES M P, et al. Involvement of the capsular GalXM-induced IL-17 cytokine in the control of Cryptococcus neoformans infection[J]. Sci Rep-UK,2018,8(1):16378. [37] MCGEACHY M J, CUA D J, GAFFEN S L. The IL-17 family of cytokines in health and disease[J]. Immunity,2019,50(4):892-906. [38] 胡红丽. IL-17通过MAPK信号通路诱导CCL7在巨噬细胞抗新生隐球菌感染免疫中的表达[D]. 中国人民解放军海军军医大学,2018. [39] SATO K, YAMAMOTO H, NOMURA T, et al. Production of IL-17A at innate immune phase leads to decreased Th1 immune response and attenuated host defense against infection with cryptococcus deneoformans[J]. J Immunol,2020,205(3):686-698. [40] SZYMCZAK W A, SELLERS R S, PIROFSKI L. IL-23 dampens the allergic response to Cryptococcus neoformans through IL-17-independent and dependent mechanisms[J]. Am J Pathol,2012,180(4):1547-1559. [41] MURDOCK B J, HUFFNAGLE G B, OLSZEWSKI M A, et al. Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production[J]. Infect Immun,2014,82(3):937-948. [42] ELAHEH M, YI Y C, GRACE M Y T, et al. Lung-infiltrating T helper 17 cells as the major source of interleukin-17A production during pulmonary Cryptococcus neoformans infection[Z].2022,17A. [43] JARVIS J N, MEINTJES G, BICANIC T, et al. Cerebrospinal fluid cytokine profiles predict risk of early mortality and immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis[Z]. 2015.11,e1004754. [44] LIU Q, CHENG L I, YI L, et al. p47phox deficiency induces macrophage dysfunction resulting in progressive crystalline macrophage pneumonia[J]. Am J Pathol,2009,174(1):153-163. [45] 吴婷,孙禾,施毅. C型凝集素受体与Th17细胞免疫在真菌感染中的研究进展[J]. 中国感染与化疗杂志,2014,14(3):257-261. [46] RUBTSOV Y P, RASMUSSEN J P, CHI E Y, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces[J]. Immunity,2008,28(4):546-558. [47] SCHULZE B, PIEHLER D, ESCHKE M, et al. CD4+ FoxP3+ regulatory T cells suppress fatal T helper 2 cell immunity during pulmonary fungal infection[J]. Eur J Immunol,2014,44(12):3596-3604. [48] WIESNER D L, SMITH K D, KOTOV D I, et al. Regulatory T cell induction and retention in the lungs drives suppression of detrimental type 2 Th cells during pulmonary cryptococcal infection[J]. J Immunol,2016,196(1):365-374. [49] 荣令,李家树,周新. Th17和Treg在真菌感染中的研究进展[J]. 中国感染与化疗杂志,2010,10(1):63-67. [50] FELDMESSER M, MEDNICK A, CASADEVALL A. Antibody-mediated protection in murine Cryptococcus neoformans infection is associated with pleotrophic effects on cytokine and leukocyte responses[J]. Infect Immun,2002,70(3):1571-1580. [51] LINDELL D M, MOORE T A, MCDONALD R A, et al. Generation of antifungal effector CD8+ T cells in the absence of CD4+ T cells during Cryptococcus neoformans infection[J]. J Immunol,2005,174(12):7920-7928. [52] HUFFNAGLE G B, LIPSCOMB M F, LOVCHIK J A, et al. The role of CD4+ and CD8+ T cells in the protective inflammatory response to a pulmonary cryptococcal infection[J]. J leukocyte biol,1994,55(1):35-42. [53] 李娟,郑全辉. NKT细胞研究进展[J]. 中国免疫学杂志,2015,31(5):700-703. [54] KAWAKAMI K, KINJO Y, UEZU K, et al. Monocyte chemoattractant protein-1-dependent increase of V alpha 14 NKT cells in lungs and their roles in Th1 response and host defense in cryptococcal infection[J]. J Immunol,2001,167(11):6525-6532. [55] BLACKSTOCK R, MURPHY J W. Age-related resistance of C57BL/6 mice to Cryptococcus neoformans is dependent on maturation of NKT cells[J]. Infect Immun,2004,72(9):5175-5180. [56] KAWAKAMI K, KINJO Y, YARA S, et al. Activation of Valpha14+ natural killer T cells by alpha-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans[J]. Infect Immun,2001,69(1):213-220. [57] TANIGUCHI M, HARADA M, KOJO S, et al. The regulatory role of Valpha14 NKT cells in innate and acquired immune response[J]. Annu Rev Immunol,2003,21:483-513. DOI:10.1146/annurev.immunol.21.120601.141057. [58] 刘玉霞,张彩. γδT细胞对肿瘤发生、发展的影响及其在肿瘤免疫治疗中的应用[J]. 中国免疫学杂志,2021,37(13):1637-1642. [59] XI X, HAN X, LI L, et al. γδ T cells response to mycobacterium tuberculosis in pulmonary tuberculosis patients using preponderant complementary determinant region 3 sequence[J]. Indian J Med Res,2011,134(3):356-361. [60] FERRETTI S, BONNEAU O, DUBOIS G R, et al. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia:IL-15 as a possible trigger[J]. J Immunol,2003,170(4):2106-2112. [61] WOZNIAK K L, KOLLS J K, WORMLEY F L J. Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased IL-17A production by γδ T cells[J]. BMC Immunol,2012,13:65. DOI:10.1186/1471-2172-13-65. [62] 席云,符永玫,陈佑明,等. 以CpG-ODN为佐剂的新型隐球菌疫苗研究[J]. 微生物学杂志,2016,36(3):53-58. [63] YANAGAWA Y, ONOE K. Distinct regulation of CD40-mediated interleukin-6 and interleukin-12 productions via mitogen-activated protein kinase and nuclear factor kappaB-inducing kinase in mature dendritic cells[J]. Immunology,2006,117(4):526-535. [64] 贺诗雯,王小花,于红,等. 靶向治疗新生隐球菌病的研究进展[J]. 中国病原生物学杂志,2018,13(8):920-924. |
[1] | 胡爱玲, 衡媛, 赵旭初, 王东, 佟钊, 杜雅丽, 赵云旺, 王娜. 医院念珠菌尿路感染菌株分布及耐药性分析[J]. 中国真菌学杂志, 2022, 17(5): 380-384. |
[2] | 王晓娟, 秦玉璘, 沈春英, 杨其莲, 喻轶群, 曹永兵, 韩冰. 他汀类药物治疗真菌感染研究进展[J]. 中国真菌学杂志, 2022, 17(5): 408-413. |
[3] | 张传明, 戴玮, 牛司强, 徐绣宇. 重庆某医院近5年新生隐球菌感染患者临床资料及药物敏感性分析[J]. 中国真菌学杂志, 2022, 17(4): 269-272,293. |
[4] | 朱俊峰, 周子阳, 胡万超, 唐建国. ICU院内真菌性尿路感染临床特点及危险因素分析[J]. 中国真菌学杂志, 2022, 17(4): 273-277. |
[5] | 高丽, 赵自屹, 樊红丽, 张桂仙, 李正伦. 云南省艾滋病患者新生隐球菌药物敏感性与临床分析[J]. 中国真菌学杂志, 2022, 17(4): 283-288. |
[6] | 杨之辉, 李若瑜. 浅部真菌感染中的抗真菌药物治疗进展[J]. 中国真菌学杂志, 2022, 17(4): 339-348. |
[7] | 郑冬燕, 曹存巍, 李秀楹, 郑艳青, 潘开素, 廖万清. 广西地区隐球菌感染的临床特征、菌种鉴定及体外抗真菌药物敏感性[J]. 中国真菌学杂志, 2022, 17(3): 188-194. |
[8] | 肖湘. 泌尿系念珠菌感染的抗真菌药物合理选用[J]. 中国真菌学杂志, 2022, 17(3): 241-243,264. |
[9] | 谢晶晶, 杨江科, 代江红. 新冠肺炎大流行中的真菌感染[J]. 中国真菌学杂志, 2022, 17(3): 260-264. |
[10] | 成微, 邓劲, 刘雅, 舒玲, 陈知行, 戴仲秋, 康梅. 热带念珠菌所致血流感染的临床及实验室分析[J]. 中国真菌学杂志, 2022, 17(2): 99-102,114. |
[11] | 唐人杰, 王瑞娜, 王智, 刘海燕, 刘旭, 李红磊, 刘佳存, 张大志, 阎澜. 某院校学员浅部真菌病调查分析[J]. 中国真菌学杂志, 2022, 17(2): 120-123. |
[12] | 梁毅, 申颖. 肺孢子菌肺外感染的临床表现和诊治研究进展[J]. 中国真菌学杂志, 2022, 17(2): 163-167. |
[13] | 郁谨菡, 赵颖, 徐英春. 机会性致病真菌解脂耶氏酵母研究进展[J]. 中国真菌学杂志, 2022, 17(2): 168-172. |
[14] | 谢韵, 帕丽达·阿布利孜. 临床罕见曲霉菌属的研究进展[J]. 中国真菌学杂志, 2022, 17(1): 84-88. |
[15] | 尚元元, 李可心, 马春梅, 李莎莎, 扈容英, 杨文君. 定量PCR检测联合G试验及GM试验对侵袭性真菌感染早期诊断的价值[J]. 中国真菌学杂志, 2021, 16(6): 367-372. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||