[1] ARENDRUP M C, PATTERSON T F. Multidrug-resistant Candida:epidemiology, molecular mechanisms, and treatment[J]. J Infect Dis, 2017,216(3):S445-S451. [2] VIEIRA DE MELO A P, ZUZA-ALVES D L, DA SILVA-ROCHA W P, et al.Virulence factors of Candida spp. obtained from blood cultures of patients with candidemia attended at tertiary hospitals in Northeast Brazil[J].J Mycol Med,2019, 29(2):132-139. [3] SIOPI M, TARPATZI A, KALOG E,et al. Epidemiological trends of fungemia in Greece with a focus on candidemia during the recent financial crisis:a 10-year survey in a tertiary care academic hospital and review of literature[J]. Antimicrob Agents Chemother,2020,64(3):e01516-19. [4] WARRIS A, PANA Z D, OLETTO A, et al. Etiology and outcome of candidemia in neonates and children in Europe:an 11-year multinational retrospective study[J].Pediatr Infect Dis J,2020, 39(2):114-120. [5] SANTOLAYA M E,THOMPSON L, BENADOF D, et al. A prospective, multi-center study of Candida bloodstream infections in Chile[J]. PloS one,2019,14(3):e0212924. [6] XIAO M,SUN Z Y,KANG M,et al. Five-year national surveillance of invasive candidiasis:species distribution and azole susceptibility from the China Hospital Invasive Fungal Surveillance NET (CHIF-NET) Study[J].J Clin Microbiol,2018,56(7):e00577-18. [7] XIAO M,CHEN S C,KONG F,et al.Distribution and antifungal susceptibility of Candida species causing candidemia in China:an update from the CHIF-NET Study[J].J Infect Dis, 2020,221(2):S139-S147. [8] ANTINORI S, MILAZZO L, SOLLIMA S,et al. Candidemia and invasive candidiasis in adults:A narrative review[J]. EUR J Intern Med, 2016, 34:21-28. DOI:10.1016/j.ejim.2016.06.029. [9] ULU KILIC A, ALP E, CEVAHIR F,et al.Epidemiology and cost implications of candidemia, a 6-year analysis from a developing country[J]. Mycoses,2017,60(3):198-200. [10] PAPPAS P G,LIONAKIS M S,ARENDRUP M C,et al. Invasive candidiasis[J]. Nat Rev Dis Primers,2018, 4(1):1-20. [11] FU J,DING Y,WEI B,et al.Epidemiology of Candida albicans and non-C.albicans of neonatal candidemia at a tertiary care hospital in western China[J].BMC Infect Dis,2017,17(1):1-6. [12] ATRIWAL T, AZEEM K, HUSAIN F M, et al. Mechanistic understanding of Candida albicans biofilm formation and approaches for its inhibition[J]. Front Microbiol,2021,12:932.DOI:10.3389/fmicb.2021.638609. [13] BHATTACHARJEE P. Epidemiology and antifungal susceptibility of Candida species in a tertiary care hospital, Kolkata, India[J]. Curr Med Mycol,2016,2(2):20-27. [14] TODA M,WILLIAMS S R,BERKOW E L,et al.Population-based active surveillance forculture-confirmed candidemia four sites,United States,2012-2016[J].Mmwr-morbid Mortal W, 2019,68(8):1-15. [15] FULLE R J,DINGLE T C,BULL A, et al.Species distribution and antifungal susceptibility of invasive Candida isolates from Canadian hospitals:results of the CANWARD 2011-2016 study[J].J Antimicrob Chemoth,2019,74(4):S48-S54. [16] WANG H, XU Y C, HSUEH P R. Epidemiology of candidemia and antifungal susceptibility in invasive Candida species in the Asia-Pacific region[J]. Future Microbiol,2016,11(11):1461-1477. [17] BOAN P, GARDAM D.Epidemiology and antifungal susceptibility patterns of candidemia from a tertiary centre in Western Australia[J].J Chemother,2019,31(3):137-140. [18] KANCHANAPIBOON J,KONGSA U,PATTAMADILOK D,et al. Boesenbergia rotunda extract inhibits Candida albicans biofilm formation by pinostrobin and pinocembrin[J].J Ethnopharmacol,2020, 261:113193.DOI:10.1016/j.jep.2020.113193. [19] 孙峰,张静,张永娟,等.侵袭性白假丝酵母感染ERG3基因突变及表达[J].中华医院感染学杂志,2020,30(14):2090-2094. [20] BERKOW E L, LOCKHART S R. Fluconazole resistance in Candida species:a current perspective[J]. Infect Drug Resist,2017,10:237-245. DOI:10.2147/IDR.S118892. [21] 胡成成,余鹏举,李少杰.真菌中麦角甾醇合成的调控机制[J].菌物研究,2019,17(3):138-146. [22] WHALEY S G, BERKOW E L, RYBAK J M, et al. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species[J]. Front Microbiol, 2017,7:2173. DOI:10.3389/fmicb.2016.02173. [23] ESCANDON P, CHOW N A, CACERES D H, et al. Molecular epidemiology of Candida auris in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance[J]. Clin Infect Dis, 2019, 68(1):15-21. [24] PRASAD R, NAIR R, BANERJEE A. Multidrug transporters of Candida species in clinical azole resistance[J]. Fungal Genet Biol, 2019,132:103252.DOI:10.1016/j.fgb.2019.103252. [25] KHANDELWAL N K, CHAUHAN N, SARKAR P, et al. Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling[J]. J Biol Chem, 2018,293(2):412-432. [26] KHANDELWAL N K,WASI M,NAIR R,et al. Vacuolar sequestration of azoles, a novel strategy of azole antifungal resistance conserved across pathogenic and nonpathogenic yeast[J]. Antimicrob Agents Chemother, 2019, 63(3):e01347-1. [27] CAUDLE K E, BARKER K S, WIEDERHOLD N P, et al. Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon[J]. Eukaryotic cell, 2011,10(3):373-383. [28] LIU Z, MYERS L C. Mediator tail module is required for Tac1-activated CDR1 expression and azole resistance in Candida albicans[J].Antimicrob Agents Chemother,2017,61(11):e01342-17. [29] GONG Y, LI T, YU C,et al. Candida albicans heat shock proteins and Hsps-associated signaling pathways as potential antifungal targets[J]. Front Cell Infect Microbiol,2017, 7:520. DOI:10.3389/fcimb.2017.00520. [30] CAPLAN T,POLVI E J,XIE J L,et al. Functional Genomic screening reveals core modulators of echinocandin stress responses in Candida albicans[J].Cell Rep,2018,23(8):2292-2298. [31] LI Y, SUN L, LU C,et al. Promising antifungal targets against Candida albicans based on ion homeostasis[J]. Front Cell Infect Mi, 2018, 8:286. DOI:10.3389/fcimb.2018.00286. [32] PRASAD R, NAIR R, BANERJEE A. Emerging mechanisms of drug resistance in Candida albicans[J]. Prog Mol Subcell Biol, 2019,58:135-153. DOI:10.1007/978-3-030-13035-0_6. [33] VASICEK E M, BERKOW E L, FLOWERS S A, et al. UPC2 is universally essential for azole antifungal resistance in Candida albicans[J]. Eukaryot Cell, 2014,13(7):933-946. [34] NAIR R, SHARIQ M, DHAMGAYE S,et al.Non-heat shock responsive roles of HSF1 in Candida albicans are essential under iron deprivation and drug defense[J]. BBA-Molecular Cell Research, 2017,1864(2):345-354. [35] JENSEN R H, ASTVAD K M T, SILVA L V,et al. Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations[J]. J Antimicrob Chemoth,2015,70(9):2551-2555. [36] MESA-ARANGO A C, TREVIJANO-CONTADOR N, ROMÁN E,et al. The production of reactive oxygen species is a universal action mechanism of amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug[J]. Antimicrob Agents Chemother, 2014, 58(11):6627-6638. [37] 侯欣,徐英春,赵玉沛.棘白菌素在念珠菌中的耐药性[J].中国真菌学杂志,2018,3(1):40-45. [38] YAN J, BASSLER B L.Surviving as a community:antibiotic tolerance and persistence in bacterial biofilms[J]. Cell Host Microbe,2019,26(1):15-21. [39] SPETTEL K, GALAZKA S, KRIZ R, et al. Do Candida albicans isolates with borderline resistant micafungin MICs always harbor FKS1 hot spot mutations[J]?J Fungi, 2021,7(2):93. [40] PRISTOV K E, GHANNOUM M A.Resistance of Candida to azoles and echinocandins worldwide[J]. Clin Microbiol Infect, 2019,25(7):792-798. [41] 张灵,杨勇.棘白菌素类抗真菌药物的耐药机制分析[J].中国药业,2020,29(12):96-99. [42] SUWUNNAKORN S, WAKABAYASHI H, KORDALEWSKA M, et al. FKS2 and FKS3 genes of opportunistic human pathogen Candida albicans influence echinocandin susceptibility[J]. Antimicrob Agents Chemother,2018,62(4):e02299-17. [43] 向小洪,廖国建.真菌耐药性研究现状及新型抗真菌药物研究进展[J].国外医药抗生素分册,2018,39(5):363-368. [44] XIE JL, QIN L, MIAO Z, et al. The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation[J]. Nat Commun, 2017, 8(1):1-18. |