[1] LANIADO-LABORÍN R, CABRALES-VARGAS M N.Amphotericin B:side effects and toxicity[J]. Rev Iberoam Micol,2009,26(4):223-227. [2] PAYNE D J, GWYNN M N, HOLMES D J, POMPLIANO D L.Drugs for bad bugs:confronting the challenges of antibacterial discovery[J]. Nat Rev Drug Discov,2007, 6(1):29-40. [3] XUE A, ROBBINS N, COWEN L E. Advances in fungal chemical genomics for the discovery of new antifungal agents[J]. Ann N Y Acad Sci,2021, 1496(1):5-22. [4] ZHOU F, LI S, ZHU Y.Integrating yeast chemical genomics and mammalian cell pathway analysis[J]. Acta Pharmacol Sin,2019, 40(9):1245-1255. [5] 周富来.基于化学基因组学的活性化合物与新靶点发现[D].上海:中国科学院大学(中国科学院上海药物研究所),2019. [6] LI Z, WANG H, CAI C.Genome-wide piggyBac transposon-based mutagenesis and quantitative insertion-site analysis in haploid Candida species[J]. Nat Protoc,2020, 15(8):2705-2727. [7] MIELICH K, SHTIFMAN-SEGAL E, GOLZ J C.Maize transposable elements Ac/Ds as insertion mutagenesis tools in Candida albicans[J]. G3(Bethesda),2018, 8(4):1139-1145. [8] SEGAL E S, GRITSENKO V, LEVITAN A.Gene essentiality analyzed by in vivo transposon mutagenesis and machine learning in a stable haploid isolate of Candida albicans[J]. Bio,2018, 9(5):e02048-18. [9] DE CÁSSIA ORLANDI SARDI J, SILVA D R, SOARES MENDES-GIANNINI M J,et al.Candida auris:Epidemiology, risk factors, virulence, resistance, and therapeutic options[J]. Microb Pathog,2018, 125:116-121.DOI:10.1016/j.micpath.2018.09.014. [10] ROEMER T, JIANG B, DAVISON J.Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery[J]. Mol Microbiol,2003, 50(1):167-181. [11] WILSON R B, DAVIS D, MITCHELL A P.Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions[J]. Bacteriol,1999, 181(6):1868-1874. [12] BAUDIN A, OZIER-KALOGEROPOULOS O, DENOUEL A.A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae[J]. Nucleic Acids Res,1993, 21(14):3329-3330. [13] GIAEVER G, SHOEMAKER D D, JONES T W.Genomic profiling of drug sensitivities via induced haploinsufficiency[J]. Nat Genet.1999, 21(3):278-283. [14] SHOEMAKER D D, LASHKARI D A, MORRIS D.Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy[J]. Nat Genet, 1996, 14(4):450-456. [15] GIAEVER G, FLAHERTY P, KUMM J.Chemogenomic profiling:identifying the functional interactions of small molecules in yeast[J]. Proc Natl Acad Sci U S A,2004, 101(3):793-798. [16] LUM P Y, ARMOUR C D, STEPANIANTS S B.Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes[J]. Cell,2004, 116(1):121-137. [17] DEUTSCHBAUER A M, JARAMILLO D F, PROCTOR M.Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast[J].Genetics,2005, 169(4):1915-1925. [18] BUTCHER R A, BHULLAR B S, PERLSTEIN E O.Microarray-based method for monitoring yeast overexpression strains reveals small-molecule targets in TOR pathway[J]. Nat Chem Biol, 2006, 2(2):103-109. [19] KUZMIN E, COSTANZO M, ANDREWS B.Synthetic genetic arrays:automation of yeast genetics[J]. Cold Spring Harb Protoc,2016,(4):pdb.top086652.DOI:10.1101/pdb.top086652. [20] TONG A H, EVANGELISTA M, PARSONS A B.Systematic genetic analysis with ordered arrays of yeast deletion mutants[J]. Science,2001, 294(5550):2364-2368. [21] MANN P A, MCLELLAN C A, KOSEOGLU S.Chemical genomics-based antifungal drug discovery:targeting glycosylphosphatidylinositol (GPI) precursor biosynthesis[J]. ACS Infect Dis,2015, 1(1):59-72. [22] XU D, JIANG B, KETELA T.Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans[J]. PLoS Pathog,2007, 3(6):e92. [23] ROEMER T, XU D, SINGH S B.Confronting the challenges of natural product-based antifungal discovery[J]. Chem Biol,2011, 18(2):148-164. [24] LAMB J, CRAWFORD E D, PECK D.The Connectivity map:using gene-expression signatures to connect small molecules, genes, and disease[J]. Science,2006, 313(5795):1929-1935. [25] IORIO F, BOSOTTI R, SCACHERI E.Discovery of drug mode of action and drug repositioning from transcriptional responses[J]. Proc Natl Acad Sci U S A,2010, 107(33):14621-14626. [26] LEE A Y, STONGE R P, PROCTOR M J.Mapping the cellular response to small molecules using chemogenomic fitness signatures[J]. Science.2014, 344(6180):208-211. [27] HILLENMEYER M E, FUNG E, WILDENHAIN J.The chemical genomic portrait of yeast:uncovering a phenotype for all genes[J]. Science,2008, 320(5874):362-365. [28] OLIVER J D, SIBLEY G E M, BECKMANN N.F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase[J]. Proc Natl Acad Sci U S A,2016, 113(45):12809-12814. [29] CHAYAKULKEEREE M, JOHNSTON S A, OEI J B.SEC14 is a specific requirement for secretion of phospholipase B1 and pathogenicity of Cryptococcus neoformans[J]. Mol Microbiol,2011, 80(4):1088-1101. [30] NILE A H, TRIPATHI A, YUAN P.PITPs as targets for selectively interfering with phosphoinositide signaling in cells[J]. Nat Chem Biol,2014, 10(1):76-84. [31] FILIPUZZI I, COTESTA S, PERRUCCIO F.High-resolution genetics identifies the lipid transfer protein Sec14p as target for antifungal ergolines[J]. PLoS Genet,2016, 12(11):e1006374. [32] HUANG Z, CHEN K, ZHANG J.A functional variomics tool for discovering drug-resistance genes and drug targets[J]. Cell Rep,2013, 3(2):577-585. |