[1] HO J, CAMILLI G, GRIFFITHS J S, et al. Candida albicans and candidalysin in inflammatory disorders and cancer[J]. Immunology,2021,162(1):11-16. [2] DAY A M, QUINN J. Stress-activated protein kinases in human fungal pathogens[J]. Front Cell Infect Microbiol, 2019,9:261.DOI:10.3389/fcimb.2019.00261. [3] RODRIGUES-POUSADA C, DEVAUX F, CAETANO S M, et al. Yeast AP-1 like transcription factors (Yap) and stress response:a current overview[J]. Microb Cell, 2019, 6(6):267-285. [4] KASTORA S L, HERRERO-DE-DIOS C, AVELAR G M, et al. Sfp1 and Rtg3 reciprocally modulate carbon source-conditional stress adaptation in the pathogenic yeast Candida albicans[J]. Mol Microbiol, 2017, 105(4):620-636. [5] SALVATORI O, PATHIRANA R U, KAY JG, et al. Candida albicans Ras1 inactivation increases resistance to phagosomal killing by human neutrophils[J]. Infect Immun, 2018, 86(12):e00685-18. [6] ALONSO-MONGE R, GUIRAO-ABAD J P, SÁNCHEZ-FRESNEDA R, et al. The fungicidal action of micafungin is independent on both oxidative stress generation and hog pathway signaling in Candida albicans[J]. Microorganisms, 2020, 8(12):1867. [7] KALORITI D, JACOBSEN M, YIN Z, et al. Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes[J]. Mbio,2014,5(4):e01334-14. [8] BHATTACHARYA S, SAE-TIA S, FRIES B C. Candidiasis and mechanisms of antifungal resistance[J]. Antibiotics (Basel), 2020, 9(6):312. [9] ROSSIGNOL T, KOCSIS B, BOUQUET O, et al. Antifungal activity of fused Mannich ketones triggers an oxidative stress response and is Cap1-dependent in Candida albicans[J]. PLoS One,2013,8(4):e62142. [10] LV Q Z, NI T J, LI L P, et al. A new antifungal agent (4-phenyl-1,3-thiazol-2-yl) hydrazine induces oxidative damage in Candida albicans[J]. Front Cell Infect Microbiol,2020,10:578956. DOI:10.3389/fcimb.2020.578956. [11] 胡婵,曹智,吴煜昊,等.白念珠菌氧化应激机制的研究进展[J].中国真菌学杂志,2019,14(3):189-192. [12] JAIN C, PASTOR K, GONZALEZ A Y, et al. The role of Candida albicans AP-1 protein against host derived ROS in in vivo models of infection[J].Virulence, 2013,4(1):67-76. [13] LEE S Y, CHEN H F, YEH Y C,et al. The transcription factor Sfp1 regulates the oxidative stress response in Candida albicans[J]. Microorganisms,2019,7(5):131. [14] PATTERSON M J, MCKENZIE C G, SMITH D A, et al. Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape[J]. Antioxid Redox Signal,2013,19(18):2244-2260. [15] LIU Z, MYERS L C. Candida albicans Swi/Snf and mediator complexes differentially regulate Mrr1-induced MDR1 expression and fluconazole resistance[J]. Antimicrob Agents Chemother, 2017, 61(11):e01344-17. [16] RAMIREZ-ZAVALA B, MOGAVERO S, SCHOLLER E, et al. SAGA/ADA complex subunit Ada2 is required for Cap1-but not Mrr1-mediated upregulation of the Candida albicans multidrug efflux pump MDR1[J]. Antimicrob Agents Chemother,2014, 58(9):5102-5110. [17] KOMALAPRIYA C, KALORITI D, TILLMANN A T, et al. Integrative modle of oxidative stress adaptation on the fungal pathogen Candida albicans[J]. PLoS One, 2015, 10(9):e0137750. [18] DAI B D, WANG Y, ZHAO L X, et al. Cap1p attenuates the apoptosis of candida albicans[J]. Febs J, 2013, 280(11):2633-2643. [19] SUCHODOLSKI J, KRASOWSKA A. Fructose induces fluconazole resistance in Candida albicans through activation of Mdr1 and Cdr1 transporters[J]. Int J Mol Sci, 2021, 22(4):2127. [20] KOS I, PATTERSON M J, ZNAIDI S, et al. Mechanisms underlying the delayed activation of the Cap1 transcription factor in Candida albicans following combinatorial oxidative and cationic stress important for phagocytic potency[J]. Mbio,2016,7(2):e00331. [21] ZHANG B, YU Q, WANG Y, et al. The Candida albicans fimbrin Sac6 regulates oxidative stress response (OSR) and morphogenesis at the transcriptional level[J]. Biochim Biophys Acta, 2016,1863(9):2255-2266. [22] 王航,阎澜.白念珠菌耐药机制研究进展[J].中国真菌学杂志,2018,13(5):314-317. [23] SCHUBERT S, BARKER K S, ZNAIDI S, et al. Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans[J]. Antimicrob Agents Chemother,2011,55(5):2212-2223. [24] SASSE C, SCHILLIG R, REIMUND A,et al. Inducible and constitutive activation of two polymorphic promoter alleles of the Candida albicans multidrug efflux pump MDR1[J]. Antimicrob Agents Chemother,2012,56(8):4490-4494. [25] FENG W, YANG J, YANG L, et al. Research of Mrr1, Cap1 and MDR1 in Candida albicans resistant to azole medications[J]. Exp Ther Med, 2018,15(2):1217-1224. [26] CHEN H, ZHOU X, REN B,et al. The regulation of hyphae growth in Candida albicans[J]. Virulence,2020,11(1):337-348. [27] SHE X, ZHANG L, PENG J, et al. Mitochondrial complex i core protein regulates cAMP signaling via phosphodiesterase Pde2 and NAD homeostasis in Candida albicans[J]. Front Microbiol, 2020, 11:559975. DOI:10.3389/fmicb.2020.559975. [28] PARRINO S M, SI H, NASEEM S, et al. cAMP-independent signal pathways stimulate hyphal morphogenesis in Candida albicans[J]. Mol Microbiol, 2017, 103(5):764-779. [29] JENULL S, TSCHERNER M, MAIR T, et al. ATAC-Seq identifies chromatin landscapes linked to the regulation of oxidative stress in the human fungal pathogen Candida albicans[J]. J Fungi (Basel),2020,6(3):182. [30] UPPULURI P, ACOSTA ZALDÍVAR M, ANDERSON M Z, et al. Candida albicans dispersed cells are developmentally distinct from biofilm and planktonic cells[J]. Mbio, 2018, 9(4):e01338-18. [31] ZOU H, FANG H M, ZHU Y, et al. Candida albicans Cyr1, Cap1 and G-actin form a sensor/effector apparatus for activating cAMP synthesis in hyphal growth[J]. Mol Microbiol,2010,75(3):579-591. [32] ZOU L, MEI Z, GUAN T, et al.Underlying mechanisms of the effect of minocycline against Candida albicans biofilms[J]. Exp Ther Med, 2021,21(5):413. [33] WALL G, MONTELONGO-JAUREGUI D, VIDAL BONIFACIO B,et al. Candida albicans biofilm growth and dispersal:contributions to pathogenesis[J]. Curr Opin Microbiol, 2019,52:1-6. DOI:10.1016/j.mib.2019.04.001. |