[1] DENNING D W, KNEALE M, SOBEL J D, et al. Global burden of recurrent vulvovaginal candidiasis:a systematic review[J]. Lancet Infect Dis, 2018, 18(11):e339-e347. [2] SOBEL J D. Pathogenesis of recurrent vulvovaginal candidiasis[J]. Curr Infect Dis Rep, 2002, 4(6):514-519. [3] SOBEL J D. Management of recurrent vulvovaginal candidiasis:unresolved issues[J]. Curr Infect Dis Rep, 2006, 8(6):481-486. [4] GONCALVES B, FERREIRA C, ALVES C T, et al. Vulvovaginal candidiasis:Epidemiology, microbiology and risk factors[J]. Crit Rev Microbiol, 2016, 42(6):905-927. [5] DE BERNARDIS F, GRAZIANI S, TIRELLI F, et al. Candida vaginitis:virulence, host response and vaccine prospects[J]. Med Mycol, 2018, 56(Suppl 1):26-31. [6] FOXMAN B, MURAGLIA R, DIETZ J P, et al. Prevalence of recurrent vulvovaginal candidiasis in 5 European countries and the United States:results from an internet panel survey[J]. J Low Genit Tract Dis, 2013, 17(3):340-345. [7] NAGLIK J R, CHALLACOMBE S J, HUBE B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis[J]. Microbiol Mol Biol R, 2003, 67(3):400-428. [8] MAYER F L, WILSON D, HUBE B. Candida albicans pathogenicity mechanisms[J]. Virulence, 2013, 4(2):119-128. [9] MONROY-PEREZ E, SAINZ-ESPUNES T, PANIAGUA-CONTRERAS G, et al. Frequency and expression of ALS and HWP1 genotypes in Candida albicans strains isolated from Mexican patients suffering from vaginal candidosis[J]. Mycoses, 2012, 55(3):e151-157. [10] CASSONE A. Vulvovaginal Candida albicans infections:pathogenesis, immunity and vaccine prospects[J]. BJOG, 2015, 122(6):785-794. [11] ALVES C T, WEI X Q, SILVA S, et al. Candida albicans promotes invasion and colonisation of Candida glabrata in a reconstituted human vaginal epithelium[J]. J Infect, 2014, 69(4):396-407. [12] PERICOLINI E, GABRIELLI E, AMACKER M, et al. Secretory aspartyl proteinases cause vaginitis and can mediate vaginitis caused by Candida albicans in mice[J]. mBio, 2015, 6(3):e00724. [13] OZCAN S K, BUDAK F, YUCESOY G, et al. Prevalence, susceptibility profile and proteinase production of yeasts causing vulvovaginitis in Turkish women[J]. APMIS, 2006, 114(2):139-145. [14] TAO L, DU H, GUAN G, et al. Discovery of a "white-gray-opaque" tristable phenotypic switching system in Candida albicans:roles of non-genetic diversity in host adaptation[J]. PLoS Biol, 2014, 12(4):e1001830. [15] YANG J, FENG W, XI Z, et al. Virulence of "white-gray-opaque" tri-stable transformation in clinical Candida albicans in vitro and in vivo[J]. Microb Pathog, 2021, 154:104825. [16] HOFS S, MOGAVERO S, HUBE B. Interaction of Candida albicans with host cells:virulence factors, host defense, escape strategies, and the microbiota[J]. J Microbiol, 2016, 54(3):149-169. [17] YANO J, PALMER G E, EBERLE K E, et al. Vaginal epithelial cell-derived S100 alarmins induced by Candida albicans via pattern recognition receptor interactions are sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis[J]. Infect Immun, 2014, 82(2):783-792. [18] KALIA N, SINGH J, KAUR M. Immunopathology of recurrent vulvovaginal infections:new aspects and research directions[J]. Front Immunol, 2019, 10:2034.DOI:10.3389/fimmu.2019.02034. [19] MOYES D L, WILSON D, RICHARDSON J P, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection[J]. Nature, 2016, 532(7597):64-68. [20] RICHARDSON J P, WILLEMS H M E, MOYES D L, et al. Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa[J]. Infect Immun, 2018, 86(2):e00645-17. [21] GABRIELLI E, SABBATINI S, ROSELLETTI E, et al. In vivo induction of neutrophil chemotaxis by secretory aspartyl proteinases of Candida albicans[J]. Virulence, 2016, 7(7):819-825. [22] BRANZK N, LUBOJEMSKA A, HARDISON S E, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens[J]. Nat Immunol, 2014, 15(11):1017-1025. [23] BISHU S, HERNANDEZ-SANTOS N, SIMPSON-ABELSON M R, et al. The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections[J]. Infect Immun, 2014, 82(3):1173-1180. [24] TSO G H W, REALES-CALDERON J A, PAVELKA N. The elusive anti-Candida vaccine:lessons from the past and opportunities for the future[J]. Front Immunol, 2018, 9:897. DOI:10.3389/fimmu.2018.00897. [25] HOYER L L, COTA E. Candida albicans agglutinin-like sequence (Als) family vignettes:a review of Als protein structure and function[J]. Front Microbiol, 2016, 7:280.DOI:10.3389/fmicb.2016.00280. [26] IBRAHIM A S, SPELLBERG B J, Avanesian V, et al. The anti-Candida vaccine based on the recombinant N-terminal domain of Als1p is broadly active against disseminated candidiasis[J]. Infect Immun, 2006, 74(5):3039-3041. [27] SPELLBERG B J, IBRAHIM A S, AVANESIAN V, et al. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis[J]. J Infect Dis, 2006, 194(2):256-260. [28] EDWARDS J E Jr, SCHWARTZ M M, SCHMIDT C S, et al. A fungal immunotherapeutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis-a phase 2 randomized, double-blind, placebo-controlled trial[J]. Clin Infect Dis, 2018, 66(12):1928-1936. [29] DE BERNARDIS F, BOCCANERA M, ADRIANI D, et al. Intravaginal and intranasal immunizations are equally effective in inducing vaginal antibodies and conferring protection against vaginal candidiasis[J]. Infect Immun, 2002, 70(5):2725-2729. [30] DE BERNARDIS F, AMACKER M, ARANCIA S, et al. A virosomal vaccine against candidal vaginitis:immunogenicity, efficacy and safety profile in animal models[J]. Vaccine, 2012, 30(30):4490-4498. [31] PIETRELLA D, RACHINI A, TOROSANTUCCI A, et al. A beta-glucan-conjugate vaccine and anti-beta-glucan antibodies are effective against murine vaginal candidiasis as assessed by a novel in vivo imaging technique[J]. Vaccine, 2010, 28(7):1717-1725. [32] TOROSANTUCCI A, BROMURO C, CHIANI P, et al. A novel glyco-conjugate vaccine against fungal pathogens[J]. J Exp Med, 2005, 202(5):597-606. |