[1] SRIVASTAVA V, SINGLA R K, DUBEY A K. Emerging virulence, drug resistance and future anti-fungal drugs for Candida pathogens[J]. Curr Top Med Chem,2018,18(9):759-778. [2] LL D, LL T, BAC C, et al. A predictive nomogram for mortality of cancer patients with invasive candidiasis:a 10-year study in a cancer center of North China[J]. BMC Infect Dis,2021,21(1):76. [3] PINTO-MAGALHAES S, MARTINS A, LACERDA S, et al. Candidemia in a Portuguese tertiary care hospital:Analysis of a 2-year period[J]. J Mycol Med,2019,29(4):320-324. [4] PRIYADARSHINI E, RAWAT K, PRASAD T, et al. Antifungal efficacy of Au@carbon dots nanoconjugates against opportunistic fungal pathogen, Candida albicans[J]. Colloids Surf B Biointerfaces,2018,163:355-361.DOI:10.1016/j.colsurfb.2018.01.006. [5] MIZUSHIMA N, LEVINE B, CUERVO A M, et al. Autophagy fights disease through cellular self-digestion[J]. Nature,2008,451(7182):1069-1075. [6] QUASCHLING T, FRIEDRICH D, DEEPE G S, et al. Crosstalk between autophagy and hypoxia-inducible factor-1α in antifungal immunity[J]. Cells,2020,9(10):2150. [7] SUN Q, FAN J, BILLIAR T R, et al. Inflammasome and autophagy regulation-a two-way street[J]. Mol Med,2017,23(1):188-195. [8] 闫思源,姜学军. 细胞自噬及真菌中自噬研究概述[J]. 菌物学报,2015,34(5):871-879. [9] 杨万镇,涂杰,刘娜,等. 真菌细胞自噬的信号调节和检测策略研究进展[J]. 药学学报,2020,55(7):1431-1438. [10] 张金宇,秦玉璘,张璐璐,等. 白念珠菌中的自噬研究进展[J]. 中国真菌学杂志,2017,12(3):175-179. [11] DELORME-AXFORD E, KLIONSKY D J. Transcriptional and post-transcriptional regulation of autophagy in the yeast Saccharomyces cerevisiae[J]. J Biol Chem,2018,293(15):5396-5403. [12] BARTOSZEWSKA M, KIEL J A. The role of macroautophagy in development of filamentous fungi[J]. Antioxid Redox Signal,2011,14(11):2271-2287. [13] YU Q, JIA C, DONG Y, et al. Candida albicans autophagy, no longer a bystander:Its role in tolerance to ER stress-related antifungal drugs[J]. Fungal Genet Biol,2015,81:238-249. DOI:10.1016/j.fgb.2015.02.008. [14] ICHIMIYA T, YAMAKAWA T, HIRANO T, et al. Autophagy and autophagy-related diseases:a review[J]. Int J Mol Sci,2020,21(23):8974. [15] WEN X, KLIONSKY D J. An overview of macroautophagy in yeast[J]. J Mol Biol,2016,428(9):1681-1699. [16] DELORME-AXFORD E, GUIMARAES R S, REGGIORI F, et al. The yeast Saccharomyces cerevisiae:an overview of methods to study autophagy progression[J]. Methods,2015,75:3-12. DOI:10.1016/j.ymeth.2014.12.008. [17] FENG Y, HE D, YAO Z, et al. The machinery of macroautophagy[J]. Cell Res,2014,24(1):24-41. [18] MELIA T J, LYSTAD A H, SIMONSEN A. Autophagosome biogenesis:From membrane growth to closure[J]. J Cell Biol,2020,219(6):e202002085. [19] WESCH N, KIRKIN V, ROGOV V V. Atg8-family proteins-structural features and molecular interactions in autophagy and beyond[J]. Cells (Basel, Switzerland),2020,9(9):2008. [20] BARTHOLOMEW C R, SUZUKI T, DU Z, et al. Ume6 transcription factor is part of a signaling cascade that regulates autophagy[J]. Proc Natl Acad Sci U S A,2012,109(28):11206-11210. [21] SHU W J, ZHAO M J, KLIONSKY D J, et al. Old factors, new players:transcriptional regulation of autophagy[J]. Autophagy,2020,16(5):956-958. [22] JIN M, KLIONSKY D J. Regulation of autophagy:Modulation of the size and number of autophagosomes[J]. FEBS letters,2014,588(15):2457-2463. [23] LIANG C Y, WANG L C, LO W S. Dissociation of the H3K36 demethylase Rph1 from chromatin mediates derepression of environmental stress-response genes under genotoxic stress in Saccharomyces cerevisiae[J]. Mol Biol Cell,2013,24(20):3251-3262. [24] BEMARD A, JIN M, GONZALEZ-RODRIGUEZ P, et al. Rph1/KDM4 mediates nutrient-limitation signaling that leads to the transcriptional induction of autophagy[J]. Curr Biol,2015,25(5):546-555. [25] BEMARD A, KLIONSKY D J. Rph1 mediates the nutrient-limitation signaling pathway leading to transcriptional activation of autophagy[J]. Autophagy,2015,11(4):718-719. [26] JIN M, HE D, BACKUES S K, et al. Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation[J]. Curr Biol,2014,24(12):1314-1322. [27] FENG Y, BACKUES S K, BABA M, et al. Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate of autophagosome formation[J]. Autophagy,2016,12(4):648-658. [28] BEMARD A, JIN M, XU Z, et al. A large-scale analysis of autophagy-related gene expression identifies new regulators of autophagy[J]. Autophagy,2015,11(11):2114-2122. [29] FELLER A, BOECKSTAENS M, MARINI A M, et al. Transduction of the nitrogen signal activating Gln3-mediated transcription is independent of Npr1 kinase and Rsp5-Bul1/2 ubiquitin ligase in Saccharomyces cerevisiae[J]. J Biol Chem,2006,281(39):28546-28554. [30] REGGIORI F, KLIONSKY D J. Autophagic processes in yeast:mechanism, machinery and regulation[J]. Genetics,2013,194(2):341-361. [31] DEVENISH R J, PRESCOTT M. Autophagy:starvation relieves transcriptional repression of ATG genes[J]. Curr Biol,2015,25(6):R238-R240. [32] NATARAJAN K, MEYER M R, JACKSON B M, et al. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast[J]. Mol Cell Biol,2001,21(13):4347-4368. [33] YAO Z, DELORME-AXFORD E, BACKUES S K, et al. Atg41/Icy2 regulates autophagosome formation[J]. Autophagy,2015,11(12):2288-2299. [34] SHEN Z, POSTNIKOFF S, TYLER J K. Is Gcn4-induced autophagy the ultimate downstream mechanism by which hormesis extends yeast replicative lifespan[J]? Current Genetics,2019,65(3):717-720. [35] BOIJA A, KLEIN I A, SABARI B R, et al. Transcription factors activate genes through the phase-separation capacity of Their activation domains[J]. Cell,2018,175(7):1842-1855. [36] SRINIVASAN R, WALVEKAR A S, RASHIDA Z, et al. Genome-scale reconstruction of Gcn4/ATF4 networks driving a growth program[J]. PLoS Genet,2020,16(12):e1009252. [37] LEE Y T, FANG Y Y, SUN Y, et al. THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans[J]. Int J Mol Med,2018,42(6):3193-3208. [38] BHARADWAJ P R, MARTINS R N. Autophagy modulates Abeta accumulation and formation of aggregates in yeast[J]. Mol Cell Neurosci,2020,104:103466.DOI:10.1016/j.mcn.2020.103466. [39] HU Z, XIA B, POSTNIKOFF S D, et al. Ssd1 and Gcn2 suppress global translation efficiency in replicatively aged yeast while their activation extends lifespan[J]. eLife,2018,7:e35551. DOI:10.7554/eLife.35551. [40] HARTZOG G A, FU J. The Spt4-Spt5 complex:a multi-faceted regulator of transcription elongation[J]. Biochim Biophys Acta,2013,1829(1):105-115. [41] WEN X, GATICA D, YIN Z, et al. The transcription factor Spt4-Spt5 complex regulates the expression of ATG8 and ATG41[J]. Autophagy,2020,16(7):1172-1185. [42] HU G, MCQUISTON T, BERNARD A, et al. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy[J]. Nat Cell Biol,2015,17(7):930-942. [43] 张金宇. 转录因子Gln3、Stp1调控白念珠菌自噬及耐受雷帕霉素的机制研究[D]. 第二军医大学,2017. [44] RAMYA V, RAJASEKHARAN R. ATG15 encodes a phospholipase and is transcriptionally regulated by YAP1 in Saccharomyces cerevisiae[J]. FEBS Lett,2016,590(18):3155-3167. |