[1] LOHSE M B, GULATI M, JOHNSON A D, et al. Development and regulation of single- and multi-species Candida albicans biofilms[J]. Nat Rev Microbiol,2018,16(1):19-31. [2] MCCALL A, EDGERTON M. Real-time approach to flow cell imaging of Candida albicans biofilm development[J]. J Fungi (Basel),2017,3(1):13. [3] DESAI J V, MITCHELL A P.Candida albicans biofilm development and its genetic control[J]. Microbiol Spectr,2015,3(3):10. [4] GRANGER B L. Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans[J]. PLoS One,2018,13(1):e0191194. [5] 何淼,宋光泰,边专.白色念珠菌ALS基因家族在生物膜形成过程中的差异表达[J].口腔医学研究,2015,31(10):957-960. [6] GULATI M, NOBILE C J.Candida albicans biofilms: development, regulation, and molecular mechanisms[J]. Microbes Infect,2016,18(5):310-321. [7] DANIELS K J, SRIKANTHA T, Pujol C, et al. Role of Tec1 in the development, architecture, and integrity of sexual biofilms of Candida albicans[J]. Eukaryot Cell,2015,14(3):228-240. [8] SU C, LU Y, LIU H.Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity[J]. Mol Biol Cell,2013,24(3):385-397. [9] XU H, SOBUE T, BERTOLINI M, et al.S. oralis activates the Efg1 filamentation pathway in C. albicans to promote cross-kingdom interactions and mucosal biofilms[J]. Virulence,2017,8(8):1602-1617. [10] FOX E P, BUI C K, NETT J E, et al. An expanded regulatory network temporally controls Candida albicans biofilm formation[J]. Mol Microbiol,2015,96(6):1226-1239. [11] CHEN H F, LAN C Y. Role of SFP1 in the regulation of Candida albicans biofilm formation[J]. Plos One,2015,10(6):e0129903. [12] KAKADE P, SADHALE P, SANYAL K, et al. ZCF32, a fungus specific Zn(II)2 Cys6 transcription factor, is a repressor of the biofilm development in the human pathogen Candida albicans[J]. Sci Rep,2016,6(1):31124. [13] ROCHA C R, SCHRÖPPEL K, HARCUS D, et al.Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans[J]. Mol Biol Cell,2001,12(11):3631-3643. [14] MANCUSO R, CHINNICI J, TSOU C, et al.Functions of Candida albicans cell wall glycosidases Dfg5p and Dcw1p in biofilm formation and HOG MAPK pathway[J]. PeerJ,2018,6:e5685. [15] FREIRE F, DE BARROS P P, PEREIRA C A, et al. Photodynamic inactivation in the expression of the Candida albicans genes ALS3, HWP1, BCR1, TEC1, CPH1, and EFG1 in biofilms[J]. Lasers Med Sci,2018,33(7):1447-1454. [16] CHILDERS D S, KADOSH D. Filament condition-specific response elements control the expression of NRG1 and UME6, key transcriptional regulators of morphology and virulence in Candida albicans[J]. PLoS One,2015,10(3):e0122775. [17] HALBANDGE S D, JADHAV A K, JANGID P M, et al. Molecular targets of biofabricated silver nanoparticles in Candida albicans[J]. J Antibiot (Tokyo),2019,72(8):640-644. [18] JIA W, ZHANG H, LI C, et al. The calcineruin inhibitor cyclosporine asynergistically enhances the susceptibility of Candida albicans biofilms to fluconazole by multiple mechanisms[J]. BMC Microbiol,2016,16(1):113. [19] 郭东东,岳慧珍,魏羽佳,等.白念珠菌生物被膜形成的遗传调控机制[J].生物工程学报,2017,33(9):1567-1581. [20] 闻轶旸,黄欣,沈帅帅,等.基于Hog-MAPK信号通路探讨白念珠菌氟康唑耐药机制的实验研究[J].中国真菌学杂志,2015,10(6):345-351. [21] KIM S H, IYER K R, PARDESHI L, et al. Genetic analysis of Candida auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance[J]. mBio,2019,10(1):e02529-18. [22] SANDAI D, TABANA Y M, OUWEINI A E, et al.Resistance of Candida albicans biofilms to drugs and the host immune system[J]. Jundishapur J Microbiol,2016,9(11):e37385. [23] SHAO J, CUI Y, ZHANG M, et al.Synergistic in vitro activity of sodium houttuyfonate with fluconazole against clinical Candida albicans strains under planktonic growing conditions[J]. Pharm Biol,2017,55(1):355-359. [24] VORKAPIC D, PRESSLER K, SCHILD S. Multifaceted roles of extracellular DNA in bacterial physiology[J]. Curr Genet,2016,62(1):71-79. [25] 高来强,王海英,王学红,等.白念珠菌氟康唑耐药株与敏感株SRB1、CDR1、ERG11表达比较分析[J].中国真菌学杂志,2017,12(3):148-151,155. [26] IBRAHIM N H, MELAKE N A, SOMILY A M, et al. The effect of antifungal combination on transcripts of a subset of drug-resistance genes in clinical isolates of Candida species induced biofilms[J]. Saudi Pharm J,2015,23(1):55-66. [27] ZHANG J, LI L, LV Q, et al. The fungal CYP51s: Their functions, structures, related drug resistance, and inhibitors[J]. Front Microbiol,2019,10:691. [28] ROBBINS N, UPPULURI P, NETT J, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms[J]. PLoS Pathog,2011,7(9):e1002257. [29] RYBAK J M, DICKENS C M, PARKER J E, et al. Loss of C-5 sterol desaturase activity results in increased resistance to azole and echinocandin antifungals in a clinical isolate of Candida parapsilosis[J]. Antimicrob Agents Chemother,2017,61(9):e00651-17. [30] MUKHERJEE P K, CHANDRA J, KUHN D M, et al. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols[J]. Infect Immun,2003,71(8):4333-4340. [31] RYBAK J M, DOORLEY L A, NISHIMOTO A T, et al. Abrogation of triazole resistance upon deletion of CDR1 in a clinical isolate of Candida auris[J]. Antimicrob Agents Chemother,2019,63(4):e00057-19. [32] LIU Z, ROSSI J M, MYERS L C. Candida albicans Zn cluster transcription factors Tac1 and Znc1 are activated by farnesol to upregulate a transcriptional program including the multidrug efflux pump CDR1[J]. Antimicrob Agents Chemother,2018,62(11):e00968-18. [33] MORSCHHÄUSER J. The genetic basis of fluconazole resistance development in Candida albicans[J]. Biochim Biophys Acta,2002,1587(2-3):240-248. [34] WANG T, SHAO J, DA W, et al. Strong synergism of palmatine and fluconazole/itraconazole against planktonic and biofilm cells of Candida species and efflux-associated antifungal mechanism[J]. Front Microbiol,2018,9:2892. [35] SASSE C, SCHILLIG R, DIEROLF F, et al. The transcription factor Ndt80 does not contribute to Mrr1-, Tac1-, and Upc2-mediated fluconazole resistance in Candida albicans[J]. PLoS One,2017,6(9):e25623. [36] KEAN R, RAMAGE G. Combined antifungal resistance and biofilm tolerance: the global threat of Candida auris[J]. mSphere,2019,4(4):e00458-19. [37] Sun J, Li Z, Chu H, et al. Candida albicans amphotericin B-tolerant persister formation is closely related to surface adhesion[J]. Mycopathologia,2016,181(1-2):41-49. [38] 孙静.表面附着、休眠对白色念珠菌生物膜滞留菌形成的影响及滞留菌相关基因的初步筛选[D].山东大学,2015. [39] BRANCO J, OLA M, SILVA R M, et al. Impact of ERG3 mutations and expression of ergosterol genes controlled by UPC2 and NDT80 in Candida parapsilosis azole resistance[J]. Clin Microbiol Infect,2017,23(8):575.e1-575.e8. [40] WUYTS J, VAN DIJCK P, HOLTAPPELS M. Fungal persister cells: The basis for recalcitrant infections [J]? PLoS Pathog,2018,14(10):e1007301. [41] LI S, SHI H, CHANG W, et al. Eudesmane sesquiterpenes from Chinese liverwort are substrates of Cdrs and display antifungal activity by targeting Erg6 and Erg11 of Candida albicans[J]. Bioorg Med Chem, 2017, 25(20): 5764-5771. [42] FENG W, YANG J, XI Z, et al. Mutations and/or overexpressions of ERG4 and ERG11 genes in clinical azolesresistant isolates of Candida albicans[J]. Microb Drug Resist, 2017, 23(5): 563-570. [43] 王小燕,杨堃,黄云超,等.真菌密度感应分子Farnesol在表皮葡萄球菌和白假丝酵母菌混合生物膜形成中的作用[J].西安交通大学学报(医学版),2015,36(2):153-158. [44] RAJENDRAN R, MOWAT E, JONES B, et al. Prior in vitro exposure to voriconazole confers resistance to amphotericin B in Aspergillus fumigatus biofilms[J]. Int J Antimicrob Agents,2015,46(3):342-345. [45] 郭彦伟,王凌峰,孟昭彦,等.真菌生物膜耐药机制与防治研究进展[J].中外医疗,2014,33(27):197-198. |